Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Energy-Aware Service Offloading for Semantic Communications in Wireless Networks (2401.15924v1)

Published 29 Jan 2024 in cs.NI

Abstract: Today, wireless networks are becoming responsible for serving intelligent applications, such as extended reality and metaverse, holographic telepresence, autonomous transportation, and collaborative robots. Although current fifth-generation (5G) networks can provide high data rates in terms of Gigabytes/second, they cannot cope with the high demands of the aforementioned applications, especially in terms of the size of the high-quality live videos and images that need to be communicated in real-time. Therefore, with the help of AI-based future sixth-generation (6G) networks, the semantic communication concept can provide the services demanded by these applications. Unlike Shannon's classical information theory, semantic communication urges the use of the semantics (meaningful contents) of the data in designing more efficient data communication schemes. Hence, in this paper, we model semantic communication as an energy minimization framework in heterogeneous wireless networks with respect to delay and quality-of-service constraints. Then, we propose a sub-optimal solution to the NP-hard combinatorial mixed-integer nonlinear programming problem (MINLP) by utilizing efficient techniques such as discrete optimization variables' relaxation. In addition, AI-based autoencoder and classifier are trained and deployed to perform semantic extraction, reconstruction, and classification services. Finally, we compare our proposed sub-optimal solution with different state-of-the-art methods, and the obtained results demonstrate its superiority.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com