Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Importance-Aware Adaptive Dataset Distillation (2401.15863v1)

Published 29 Jan 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Herein, we propose a novel dataset distillation method for constructing small informative datasets that preserve the information of the large original datasets. The development of deep learning models is enabled by the availability of large-scale datasets. Despite unprecedented success, large-scale datasets considerably increase the storage and transmission costs, resulting in a cumbersome model training process. Moreover, using raw data for training raises privacy and copyright concerns. To address these issues, a new task named dataset distillation has been introduced, aiming to synthesize a compact dataset that retains the essential information from the large original dataset. State-of-the-art (SOTA) dataset distillation methods have been proposed by matching gradients or network parameters obtained during training on real and synthetic datasets. The contribution of different network parameters to the distillation process varies, and uniformly treating them leads to degraded distillation performance. Based on this observation, we propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance by automatically assigning importance weights to different network parameters during distillation, thereby synthesizing more robust distilled datasets. IADD demonstrates superior performance over other SOTA dataset distillation methods based on parameter matching on multiple benchmark datasets and outperforms them in terms of cross-architecture generalization. In addition, the analysis of self-adaptive weights demonstrates the effectiveness of IADD. Furthermore, the effectiveness of IADD is validated in a real-world medical application such as COVID-19 detection.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.