Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LSTM-based Deep Neural Network With A Focus on Sentence Representation for Sequential Sentence Classification in Medical Scientific Abstracts (2401.15854v2)

Published 29 Jan 2024 in cs.CL

Abstract: The Sequential Sentence Classification task within the domain of medical abstracts, termed as SSC, involves the categorization of sentences into pre-defined headings based on their roles in conveying critical information in the abstract. In the SSC task, sentences are sequentially related to each other. For this reason, the role of sentence embeddings is crucial for capturing both the semantic information between words in the sentence and the contextual relationship of sentences within the abstract, which then enhances the SSC system performance. In this paper, we propose a LSTM-based deep learning network with a focus on creating comprehensive sentence representation at the sentence level. To demonstrate the efficacy of the created sentence representation, a system utilizing these sentence embeddings is also developed, which consists of a Convolutional-Recurrent neural network (C-RNN) at the abstract level and a multi-layer perception network (MLP) at the segment level. Our proposed system yields highly competitive results compared to state-of-the-art systems and further enhances the F1 scores of the baseline by 1.0%, 2.8%, and 2.6% on the benchmark datasets PudMed 200K RCT, PudMed 20K RCT and NICTA-PIBOSO, respectively. This indicates the significant impact of improving sentence representation on boosting model performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.