Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Brain-Inspired Physics-Informed Neural Networks: Bare-Minimum Neural Architectures for PDE Solvers (2401.15661v2)

Published 28 Jan 2024 in cs.CE

Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a powerful tool for solving partial differential equations~(PDEs) in various scientific and engineering domains. However, traditional PINN architectures typically rely on large, fully connected multilayer perceptrons~(MLPs), lacking the sparsity and modularity inherent in many traditional numerical solvers. An unsolved and critical question for PINN is: What is the minimum PINN complexity regarding nodes, layers, and connections needed to provide acceptable performance? To address this question, this study investigates a novel approach by merging established PINN methodologies with brain-inspired neural network techniques. We use Brain-Inspired Modular Training~(BIMT), leveraging concepts such as locality, sparsity, and modularity inspired by the organization of the brain. With brain-inspired PINN, we demonstrate the evolution of PINN architectures from large, fully connected structures to bare-minimum, compact MLP architectures, often consisting of a few neural units! Moreover, using brain-inspired PINN, we showcase the spectral bias phenomenon occurring on the PINN architectures: bare-minimum architectures solving problems with high-frequency components require more neural units than PINN solving low-frequency problems. Finally, we derive basic PINN building blocks through BIMT training on simple problems akin to convolutional and attention modules in deep neural networks, enabling the construction of modular PINN architectures. Our experiments show that brain-inspired PINN training leads to PINN architectures that minimize the computing and memory resources yet provide accurate results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)