Papers
Topics
Authors
Recent
2000 character limit reached

Quantifying Stereotypes in Language (2401.15535v1)

Published 28 Jan 2024 in cs.CL

Abstract: A stereotype is a generalized perception of a specific group of humans. It is often potentially encoded in human language, which is more common in texts on social issues. Previous works simply define a sentence as stereotypical and anti-stereotypical. However, the stereotype of a sentence may require fine-grained quantification. In this paper, to fill this gap, we quantify stereotypes in language by annotating a dataset. We use the pre-trained LLMs (PLMs) to learn this dataset to predict stereotypes of sentences. Then, we discuss stereotypes about common social issues such as hate speech, sexism, sentiments, and disadvantaged and advantaged groups. We demonstrate the connections and differences between stereotypes and common social issues, and all four studies validate the general findings of the current studies. In addition, our work suggests that fine-grained stereotype scores are a highly relevant and competitive dimension for research on social issues.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.