Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An open dataset for oracle bone script recognition and decipherment (2401.15365v4)

Published 27 Jan 2024 in cs.CV

Abstract: Oracle bone script, one of the earliest known forms of ancient Chinese writing, presents invaluable research materials for scholars studying the humanities and geography of the Shang Dynasty, dating back 3,000 years. The immense historical and cultural significance of these writings cannot be overstated. However, the passage of time has obscured much of their meaning, presenting a significant challenge in deciphering these ancient texts. With the advent of AI, employing AI to assist in deciphering Oracle Bone Characters (OBCs) has become a feasible option. Yet, progress in this area has been hindered by a lack of high-quality datasets. To address this issue, this paper details the creation of the HUST-OBC dataset. This dataset encompasses 77,064 images of 1,588 individual deciphered characters and 62,989 images of 9,411 undeciphered characters, with a total of 140,053 images, compiled from diverse sources. The hope is that this dataset could inspire and assist future research in deciphering those unknown OBCs. All the codes and datasets are available at https://github.com/Yuliang-Liu/Open-Oracle.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.