Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Benchmarking with MIMIC-IV, an irregular, spare clinical time series dataset (2401.15290v1)

Published 27 Jan 2024 in cs.LG

Abstract: Electronic health record (EHR) is more and more popular, and it comes with applying machine learning solutions to resolve various problems in the domain. This growing research area also raises the need for EHRs accessibility. Medical Information Mart for Intensive Care (MIMIC) dataset is a popular, public, and free EHR dataset in a raw format that has been used in numerous studies. However, despite of its popularity, it is lacking benchmarking work, especially with recent state of the art works in the field of deep learning with time-series tabular data. The aim of this work is to fill this lack by providing a benchmark for latest version of MIMIC dataset, MIMIC-IV. We also give a detailed literature survey about studies that has been already done for MIIMIC-III.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: