Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Analysis and Synthesis Methods: Subjective and Objective Evaluations Using Various Microphone Arrays in the Auralization of a Critical Listening Room (2401.15023v1)

Published 26 Jan 2024 in eess.AS and cs.SD

Abstract: Parametric sound field synthesis methods, such as the Spatial Decomposition Method (SDM) and Higher-Order Spatial Impulse Response Rendering (HO-SIRR), are widely used for the analysis and auralization of sound fields. This paper studies the performances of various sound field synthesis methods in the context of the auralization of a critical listening room. The influence on the perceived spatial and timbral fidelity of the following factors is considered: the rendering framework, direction of arrival (DOA) estimation method, microphone array structure, and use of a dedicated center reference microphone with SDM. Listening tests compare the synthesized sound fields to a reference binaural rendering condition. Several acoustic parameters are measured to gain insights into objective differences between methods. A high-quality pressure microphone improves the SDM framework's timbral fidelity. Additionally, SDM and HO-SIRR show similarities in spatial fidelity. Performance variation between SDM configurations is influenced by the DOA estimation method and microphone array construction. The binaural SDM (BSDM) presentations display temporal artifacts impacting sound quality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. A. Abdou and R. W. Guy, “Spatial information of sound fields for room-acoustics evaluation and diagnosis,” The Journal of the Acoustical Society of America, vol. 100, no. 5, pp. 3215–3226, Nov. 1996.
  2. B. N. Gover, J. G. Ryan, and M. R. Stinson, “Measurements of directional properties of reverberant sound fields in rooms using a spherical microphone array,” The Journal of the Acoustical Society of America, vol. 116, no. 4, pp. 2138–2148, Oct. 2004.
  3. Y. Yamasaki and T. Itow, “Measurement of spatial information in sound fields by closely located four point microphone method.” Journal of the Acoustical Society of Japan (E), vol. 10, no. 2, pp. 101–110, 1989.
  4. J. Merimaa and V. Pulkki, “Spatial impulse response rendering I: Analysis and synthesis,” Journal of the Audio Engineering Society, vol. 53, no. 12, pp. 1115–1127, 2005.
  5. S. Tervo, J. Pätynen, A. Kuusinen, and T. Lokki, “Spatial decomposition method for room impulse responses,” Journal of the Audio Engineering Society, vol. 61, no. 1/2, pp. 17–28, 2013.
  6. S. Tervo, “SDM Toolbox,” https://uk.mathworks.com/matlabcentral/fileexchange/56663-sdm-toolbox, Sep. 2023.
  7. J. Pätynen, S. Tervo, and T. Lokki, “Analysis of concert hall acoustics via visualizations of time-frequency and spatiotemporal responses,” The Journal of the Acoustical Society of America, vol. 133, no. 2, pp. 842–857, 2013.
  8. S. Tervo, J. Pätynen, N. Kaplanis, M. Lydolf, S. Bech, and T. Lokki, “Spatial analysis and synthesis of car audio system and car cabin acoustics with a compact microphone array,” Journal of the Audio Engineering Society, vol. 63, no. 11, pp. 914–925, 2015.
  9. S. V. A. Garí, J. Pätynen, and T. Lokki, “Physical and Perceptual Comparison of Real and Focused Sound Sources in a Concert Hall,” Journal of the Audio Engineering Society, vol. 64, no. 12, pp. 1014–1025, Dec. 2016.
  10. S. V. Amengual Garí, D. Eddy, M. Kob, and T. Lokki, “Real-time auralization of room acoustics for the study of live music performance,” in Jahrestagung Für Akustik, DAGA 2016, 2016.
  11. L. Müller and J. Ahrens, “Perceptual Differences for Modifications of the Elevation of Early Room Reflections,” in Audio Engineering Society Conference: AES 2022 International Audio for Virtual and Augmented Reality Conference.   Audio Engineering Society, Aug. 2022.
  12. F. Bederna, L. Müller, and J. Ahrens, “Perceptual Detection Thresholds for Alterations of the Azimuth of Early Room Reflections,” in Jahrestagung Für Akustik, DAGA 2023, Hamburg, Germany, Mar. 2023.
  13. O. C. Gomes, N. Meyer-Kahlen, W. Lachenmayr, and T. Lokki, “Perceptual Consequences of Direction and Level of Early Reflections in a Chamber Music Hall,” in Jahrestagung Für Akustik, DAGA 2022, 2022.
  14. P. Coleman, A. Franck, P. Jackson, R. J. Hughes, L. Remaggi, and F. Melchior, “Object-based reverberation for spatial audio,” Journal of the Audio Engineering Society, vol. 65, no. 1/2, pp. 66–77, 2017.
  15. L. McCormack, V. Pulkki, A. Politis, O. Scheuregger, and M. Marschall, “Higher-Order Spatial Impulse Response Rendering: Investigating the Perceived Effects of Spherical Order, Dedicated Diffuse Rendering, and Frequency Resolution,” Journal of the Audio Engineering Society, vol. 68, no. 5, pp. 338–354, Jun. 2020.
  16. S. V. Amengual Garí, J. M. Arend, P. T. Calamia, and P. W. Robinson, “Optimizations of the spatial decomposition method for binaural reproduction,” Journal of the Audio Engineering Society, vol. 68, no. 12, pp. 959–976, 2021.
  17. C. Hold, L. McCormack, and V. Pulkki, “Parametric binaural reproduction of higher-order spatial impulse responses,” in Proceedings of the 24th International Congress on Acoustics, Oct. 2022, p. 5.
  18. E. Hoffbauer and M. Frank, “Four-Directional Ambisonic Spatial Decomposition Method With Reduced Temporal Artifacts,” Journal of the Audio Engineering Society, vol. 70, no. 12, pp. 1002–1014, Dec. 2022.
  19. L. Mccormack, N. Meyer-Kahlen, and A. Politis, “Spatial Reconstruction-Based Rendering of Microphone Array Room Impulse Responses,” Journal of the Audio Engineering Society, vol. 71, no. 5, pp. 267–280, 2023.
  20. V. Pulkki and J. Merimaa, “Spatial impulse response rendering II: Reproduction of diffuse sound and listening tests,” Journal of the Audio Engineering Society, vol. 54, no. 1/2, pp. 3–20, 2006.
  21. J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,” The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950, 1979.
  22. J. Ahrens, “Perceptual evaluation of binaural auralization of data obtained from the spatial decomposition method,” in 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).   IEEE, 2019, pp. 65–69.
  23. S. V. Amengual Garí, W. Lachenmayr, and E. Mommertz, “Spatial analysis and auralization of room acoustics using a tetrahedral microphone,” The Journal of the Acoustical Society of America, vol. 141, no. 4, pp. EL369–EL374, 2017.
  24. A. Pawlak, H. Lee, A. Mäkivirta, and T. Lund, “Subjective evaluation of spatial analysis and synthesis methods using different microphone arrays,” in 2021 Immersive and 3D Audio: From Architecture to Automotive (I3DA).   IEEE, 2021, pp. 1–7.
  25. ITU-R BS.1116-3, “Methods for the Subjective Assessment of Small Impairments in Audio Systems,” Feb. 2015.
  26. ITU-R BS.2051-3, “Advanced sound system for programme production,” May 2022.
  27. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp. 320–327, Aug. 1976.
  28. L. Zhang and X. Wu, “On cross correlation based-discrete time delay estimation,” in Proceedings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., vol. 4.   IEEE, 2005, pp. iv–981.
  29. J. Yli-Hietanen, K. Kalliojarvi, and J. Astola, “Low-complexity angle of arrival estimation of wideband signals using small arrays,” in Proceedings of 8th Workshop on Statistical Signal and Array Processing.   IEEE, 1996, pp. 109–112.
  30. Y. Yamasaki, S. Yamasuda, H. Saitow, K. Yasukawa, and T. Itow, “An application of digital techniques to obtain the spatial information of a room,” The Journal of the Acoustical Society of America, vol. 64, no. S1, pp. S149–S149, 1978.
  31. K. Sekiguchi, S. Kimura, and T. Hanyuu, “Analysis of sound field on spatial information using a four-channel microphone system based on regular tetrahedron peak point method,” Applied Acoustics, vol. 37, no. 4, pp. 305–323, 1992.
  32. S. Tervo, T. Korhonen, and T. Lokki, “Estimation of reflections from impulse responses,” Building Acoustics, vol. 18, pp. 159–173, 2011.
  33. D. P. Jarrett, E. A. Habets, and P. A. Naylor, “3D source localization in the spherical harmonic domain using a pseudointensity vector,” in 2010 18th European Signal Processing Conference.   IEEE, 2010, pp. 442–446.
  34. J. Ahrens, “Auralization of omnidirectional room impulse responses based on the spatial decomposition method and synthetic spatial data,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2019, pp. 146–150.
  35. M. Zaunschirm, M. Frank, and F. Zotter, “BRIR synthesis using first-order microphone arrays,” in Audio Engineering Society Convention 144.   Audio Engineering Society, 2018.
  36. A. Bassuet, “New acoustical parameters and visualization techniques to analyze the spatial distribution of sound in music spaces,” Building Acoustics, vol. 18, no. 3-4, pp. 329–347, 2011.
  37. J. Pätynen, S. Tervo, and T. Lokki, “Amplitude panning decreases spectral brightness with concert hall auralizations,” in Audio Engineering Society Conference: 55th International Conference: Spatial Audio.   Audio Engineering Society, 2014.
  38. M. Zaunschirm, M. Frank, and F. Zotter, “Binaural rendering with measured room responses: First-order ambisonic microphone vs. dummy head,” Applied Sciences, vol. 10, no. 5, p. 1631, 2020.
  39. O. Puomio, J. Pätynen, and T. Lokki, “Optimization of virtual loudspeakers for spatial room acoustics reproduction with headphones,” Applied Sciences, vol. 7, no. 12, p. 1282, 2017.
  40. S. V. Amengual Garí, “BinauralSDM,” https://github.com/facebookresearch/BinauralSDM, Jun. 2023.
  41. S. Tervo, P. Laukkanen, J. Pätynen, and T. Lokki, “Preferences of critical listening environments among sound engineers,” Journal of the Audio Engineering Society, vol. 62, no. 5, pp. 300–314, 2014.
  42. S. V. A. Garí, W. O. Brimijoin, H. G. Hassager, and P. W. Robinson, “Flexible binaural resynthesis of room impulse responses for augmented reality research,” in EAA Spatial Audio Signal Processing Symposium, 2019, pp. 161–166.
  43. S. K. Zielinski, F. Rumsey, R. Kassier, and S. Bech, “Comparison of basic audio quality and timbral and spatial fidelity changes caused by limitation of bandwidth and by down-mix algorithms in 5.1 surround audio systems,” Journal of the Audio Engineering Society, vol. 53, no. 3, pp. 174–192, 2005.
  44. ITU-R BS.1534-3, “Method for the subjective assessment of intermediate quality level of audio systems,” 2014.
  45. K. Hiyama, S. Komiyama, and K. Hamasaki, “The minimum number of loudspeakers and its arrangement for reproducing the spatial impression of diffuse sound field,” in Audio Engineering Society Convention 113.   Audio Engineering Society, 2002.
  46. F. Menzer and C. Faller, “Investigations on modeling BRIR tails with filtered and coherence-matched noise,” in Audio Engineering Society Convention 127.   Audio Engineering Society, 2009.
  47. D. Johnson and H. Lee, “Huddersfield Universal Listening Test Interface Generator (HULTI-GEN) Version 2,” in Audio Engineering Society Convention 149.   Audio Engineering Society, 2020.
  48. A. Farina, “Advancements in impulse response measurements by sine sweeps,” in Audio Engineering Society Convention 122.   Audio Engineering Society, 2007.
  49. H. Helmholz, I. Ananthabhotla, P. T. Calamia, and S. V. Amengual Gari, “Towards the Prediction of Perceived Room Acoustical Similarity,” in Audio Engineering Society Conference: AES 2022 International Audio for Virtual and Augmented Reality Conference.   Audio Engineering Society, Aug. 2022.
  50. T. Surdu, C. Schneiderwind, P. Popp, L. Treybig, and S. Werner, “A. LI. EN: An Audiovisual Dataset of different Acoustical Impulse Responses Measured in a Living Room Environment,” in Jahrestagung Für Akustik, DAGA 2023, Hamburg, Germany, 2023.
  51. N. Meyer-Kahlen, S. V. A. Garí, I. Ananthabhotla, and P. Calamia, “A Two-Dimensional Threshold Test for Reverberation Time and Direct-to-Reverberant Ratio,” in 2023 Immersive and 3D Audio: From Architecture to Automotive (I3DA).   IEEE, 2023, pp. 1–8.
  52. L. McCormack, “HO-SIRR,” https://github.com/leomccormack/HO-SIRR, Aug. 2023.
  53. B. Bernschütz, “A spherical far field HRIR/HRTF compilation of the Neumann KU 100,” in Proceedings of the 40th Italian (AIA) Annual Conference on Acoustics and the 39th German Annual Conference on Acoustics (DAGA) Conference on Acoustics.   AIA/DAGA, 2013, p. 29.
  54. P. Majdak, F. Zotter, F. Brinkmann, J. De Muynke, M. Mihocic, and M. Noisternig, “Spatially Oriented Format for Acoustics 2.1: Introduction and Recent Advances,” Journal of the Audio Engineering Society, vol. 70, no. 7/8, pp. 565–584, 2022.
  55. Bang & Olufsen, “Music for Archimedes,” [Audio CD], Denmark, 1992.
  56. V. Hansen and G. Munch, “Making recordings for simulation tests in the Archimedes project,” Journal of the Audio Engineering Society, vol. 39, no. 10, pp. 768–774, 1991.
  57. Various Artists, “Anechoic orchestral music recording,” [Audio CD] Denon, PG-6006, Nippon Columbia Co., Ltd, Japan, 1988.
  58. H. Lee, M. Frank, and F. Zotter, “Spatial and timbral fidelities of binaural ambisonics decoders for main microphone array recordings,” in Audio Engineering Society Conference: 2019 AES International Conference on Immersive and Interactive Audio.   Audio Engineering Society, 2019.
  59. O. Kirkeby and P. A. Nelson, “Digital filter design for inversion problems in sound reproduction,” Journal of the Audio Engineering Society, vol. 47, no. 7/8, pp. 583–595, 1999.
  60. Z. Schärer and A. Lindau, “Evaluation of equalization methods for binaural signals,” in Audio Engineering Society Convention 126.   Audio Engineering Society, 2009.
  61. P. Zahorik, “Direct-to-reverberant energy ratio sensitivity,” The Journal of the Acoustical Society of America, vol. 112, no. 5, pp. 2110–2117, Nov. 2002.
  62. A. Andreopoulou and B. F. G. Katz, “Identification of perceptually relevant methods of inter-aural time difference estimation,” The Journal of the Acoustical Society of America, vol. 142, no. 2, pp. 588–598, Aug. 2017.
  63. ISO 3382-1, “Acoustics — Measurement of room acoustic parameters. Part 1: Performance spaces,” 2009.
  64. T. Hidaka, L. L. Beranek, and T. Okano, “Interaural cross-correlation, lateral fraction, and low- and high-frequency sound levels as measures of acoustical quality in concert halls,” The Journal of the Acoustical Society of America, vol. 98, no. 2, pp. 988–1007, Aug. 1995.
  65. S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian journal of statistics, pp. 65–70, 1979.
  66. H. Lee and D. Johnson, “3D microphone array comparison: Objective measurements,” Journal of the Audio Engineering Society, vol. 69, no. 11, pp. 871–887, 2021.
  67. J. Nikunen and T. Virtanen, “Time-difference of arrival model for spherical microphone arrays and application to direction of arrival estimation,” in 2017 25th European Signal Processing Conference (EUSIPCO).   IEEE, 2017, pp. 1255–1259.

Summary

We haven't generated a summary for this paper yet.