Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Local Control Barrier Functions for Hybrid Systems (2401.14907v2)

Published 26 Jan 2024 in cs.RO, cs.LG, cs.SY, and eess.SY

Abstract: Hybrid dynamical systems are ubiquitous as practical robotic applications often involve both continuous states and discrete switchings. Safety is a primary concern for hybrid robotic systems. Existing safety-critical control approaches for hybrid systems are either computationally inefficient, detrimental to system performance, or limited to small-scale systems. To amend these drawbacks, in this paper, we propose a learning-enabled approach to construct local Control Barrier Functions (CBFs) to guarantee the safety of a wide class of nonlinear hybrid dynamical systems. The end result is a safe neural CBF-based switching controller. Our approach is computationally efficient, minimally invasive to any reference controller, and applicable to large-scale systems. We empirically evaluate our framework and demonstrate its efficacy and flexibility through two robotic examples including a high-dimensional autonomous racing case, against other CBF-based approaches and model predictive control.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: