Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neuromorphic quadratic programming for efficient and scalable model predictive control (2401.14885v3)

Published 26 Jan 2024 in cs.NE, cs.ET, and cs.RO

Abstract: Applications in robotics or other size-, weight- and power-constrained autonomous systems at the edge often require real-time and low-energy solutions to large optimization problems. Event-based and memory-integrated neuromorphic architectures promise to solve such optimization problems with superior energy efficiency and performance compared to conventional von Neumann architectures. Here, we present a method to solve convex continuous optimization problems with quadratic cost functions and linear constraints on Intel's scalable neuromorphic research chip Loihi 2. When applied to model predictive control (MPC) problems for the quadruped robotic platform ANYmal, this method achieves over two orders of magnitude reduction in combined energy-delay product compared to the state-of-the-art solver, OSQP, on (edge) CPUs and GPUs with solution times under ten milliseconds for various problem sizes. These results demonstrate the benefit of non-von-Neumann architectures for robotic control applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified mpc framework for whole-body dynamic locomotion and manipulation,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4688–4695, 2021.
  2. C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and B. Kay, “Opportunities for neuromorphic computing algorithms and applications,” Nature Computational Science, vol. 2, no. 1, pp. 10–19, Jan 2022. [Online]. Available: https://doi.org/10.1038/s43588-021-00184-y
  3. G. A. Fonseca Guerra and S. B. Furber, “Using stochastic spiking neural networks on spinnaker to solve constraint satisfaction problems,” Frontiers in neuroscience, vol. 11, p. 714, 2017.
  4. M. Z. Alom, B. Van Essen, A. T. Moody, D. P. Widemann, and T. M. Taha, “Quadratic unconstrained binary optimization (qubo) on neuromorphic computing system,” in 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 3922–3929.
  5. S. M. Mniszewski, “Graph partitioning as quadratic unconstrained binary optimization (qubo) on spiking neuromorphic hardware,” in Proceedings of the International Conference on Neuromorphic Systems, ser. ICONS ’19.   New York, NY, USA: Association for Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3354265.3354269
  6. P. T. P. Tang, T.-H. Lin, and M. Davies, “Sparse coding by spiking neural networks: Convergence theory and computational results,” arXiv preprint arXiv:1705.05475, 2017.
  7. M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra, P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic computing with loihi: A survey of results and outlook,” Proceedings of the IEEE, vol. 109, no. 5, pp. 911–934, 2021.
  8. G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T. Sommer, and M. Davies, “Efficient neuromorphic signal processing with loihi 2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS), 2021, pp. 254–259.
  9. M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch et al., “Anymal-a highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2016, pp. 38–44.
  10. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  11. M. S. Andersen and J. Dahl and L. Vandenberghe, “CVXOPT: A Python package for convex optimization,” 2012. [Online]. Available: http://abel.ee.ucla.edu/cvxopt
  12. H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpoases: a parametric active-set algorithm for quadratic programming,” Mathematical Programming Computation, vol. 6, no. 4, pp. 327–363, Dec 2014. [Online]. Available: https://doi.org/10.1007/s12532-014-0071-1
  13. A. Domahidi, E. Chu, and S. Boyd, “ECOS: An OSCP solver for embedded systems,” in 2013 European Control Conference (ECC), 2013, pp. 3071–3076.
  14. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, Dec 2020. [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2
  15. L. Yu, A. Goldsmith, and S. Di Cairano, “Efficient convex optimization on gpus for embedded model predictive control,” in Proceedings of the General Purpose GPUs, ser. GPGPU-10.   New York, NY, USA: Association for Computing Machinery, 2017, p. 12–21. [Online]. Available: https://doi.org/10.1145/3038228.3038234
  16. M. Schubiger, G. Banjac, and J. Lygeros, “GPU acceleration of admm for large-scale quadratic programming,” Journal of Parallel and Distributed Computing, vol. 144, pp. 55–67, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0743731520303063
  17. I. McInerney, G. A. Constantinides, and E. C. Kerrigan, “A survey of the implementation of linear model predictive control on fpgas,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 381–387, 2018, 6th IFAC Conference on Nonlinear Model Predictive Control NMPC 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896318327216
  18. S. Lucia, D. Navarro, O. Lucia, P. Zometa, and R. Findeisen, “Optimized fpga implementation of model predictive control for embedded systems using high-level synthesis tool,” IEEE Transactions on Industrial Informatics, vol. 14, no. 1, pp. 137–145, 2018.
  19. T. Skibik and A. A. Adegbege, “An architecture for analog vlsi implementation of embedded model predictive control,” in 2018 Annual American Control Conference (ACC), 2018, pp. 4676–4681.
  20. A. Mancoo, S. Keemink, and C. K. Machens, “Understanding spiking networks through convex optimization,” Advances in Neural Information Processing Systems, vol. 33, 2020.
  21. Y. Yu, P. Elango, and B. Açıkmeşe, “Proportional-integral projected gradient method for model predictive control,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2174–2179, 2021.
  22. A. Shrestha, H. Fang, Z. Mei, D. P. Rider, Q. Wu, and Q. Qiu, “A survey on neuromorphic computing: Models and hardware,” IEEE Circuits and Systems Magazine, vol. 22, no. 2, pp. 6–35, 2022.
  23. G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T. Sommer, and M. Davies, “Efficient neuromorphic signal processing with loihi 2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS).   IEEE, 2021, pp. 254–259.
  24. F. Farshidian et al., “OCS2: An open source library for optimal control of switched systems,” [Online]. Available: https://github.com/leggedrobotics/ocs2.
  25. M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
  26. M. Diehl, R. Findeisen, and F. Allgöwer, “A stabilizing real-time implementation of nonlinear model predictive control,” in Real-Time PDE-Constrained Optimization.   SIAM, 2007, pp. 25–52.
  27. Y. de Viragh, M. Bjelonic, C. D. Bellicoso, F. Jenelten, and M. Hutter, “Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1633–1640, 2019.
  28. K. Cheshmi, D. M. Kaufman, S. Kamil, and M. M. Dehnavi, “Nasoq: Numerically accurate sparsity-oriented QP solver,” ACM Trans. Graph., vol. 39, no. 4, aug 2020. [Online]. Available: https://doi.org/10.1145/3386569.3392486
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (2)

Summary

We haven't generated a summary for this paper yet.