Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Point Transformer (2401.14845v1)

Published 26 Jan 2024 in cs.CV and cs.LG

Abstract: The recent surge in 3D data acquisition has spurred the development of geometric deep learning models for point cloud processing, boosted by the remarkable success of transformers in natural language processing. While point cloud transformers (PTs) have achieved impressive results recently, their quadratic scaling with respect to the point cloud size poses a significant scalability challenge for real-world applications. To address this issue, we propose the Adaptive Point Cloud Transformer (AdaPT), a standard PT model augmented by an adaptive token selection mechanism. AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds. Furthermore, we introduce a budget mechanism to flexibly adjust the computational cost of the model at inference time without the need for retraining or fine-tuning separate models. Our extensive experimental evaluation on point cloud classification tasks demonstrates that AdaPT significantly reduces computational complexity while maintaining competitive accuracy compared to standard PTs. The code for AdaPT is made publicly available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

HackerNews