Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Expressivity-aware Music Performance Retrieval using Mid-level Perceptual Features and Emotion Word Embeddings (2401.14826v1)

Published 26 Jan 2024 in cs.SD, cs.IR, and eess.AS

Abstract: This paper explores a specific sub-task of cross-modal music retrieval. We consider the delicate task of retrieving a performance or rendition of a musical piece based on a description of its style, expressive character, or emotion from a set of different performances of the same piece. We observe that a general purpose cross-modal system trained to learn a common text-audio embedding space does not yield optimal results for this task. By introducing two changes -- one each to the text encoder and the audio encoder -- we demonstrate improved performance on a dataset of piano performances and associated free-text descriptions. On the text side, we use emotion-enriched word embeddings (EWE) and on the audio side, we extract mid-level perceptual features instead of generic audio embeddings. Our results highlight the effectiveness of mid-level perceptual features learnt from music and emotion enriched word embeddings learnt from emotion-labelled text in capturing musical expression in a cross-modal setting. Additionally, our interpretable mid-level features provide a route for introducing explainability in the retrieval and downstream recommendation processes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.