Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code Summarization (2401.14727v1)

Published 26 Jan 2024 in cs.SE

Abstract: Code summarization aims to generate natural language descriptions of source code, facilitating programmers to understand and maintain it rapidly. While previous code summarization efforts have predominantly focused on method-level, this paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects. Unlike method-level code summarization,file-level code summarization typically involves long source code within a single file, which makes it challenging for Transformer-based models to understand the code semantics for the maximum input length of these models is difficult to set to a large number that can handle long code input well, due to the quadratic scaling of computational complexity with the input sequence length. To address this challenge, we propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences. Specifically, the SparseCoder employs a sliding window mechanism for self-attention to model short-term dependencies and leverages the structure message of code to capture long-term dependencies among source code identifiers by introducing two types of sparse attention patterns named global and identifier attention. To evaluate the performance of SparseCoder, we construct a new dataset FILE-CS for file-level code summarization in Python. Experimental results show that our SparseCoder model achieves state-of-the-art performance compared with other pre-trained models, including full self-attention and sparse models. Additionally, our model has low memory overhead and achieves comparable performance with models using full self-attention mechanism.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com