Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diversity-guided Search Exploration for Self-driving Cars Test Generation through Frenet Space Encoding (2401.14682v1)

Published 26 Jan 2024 in cs.SE

Abstract: The rise of self-driving cars (SDCs) presents important safety challenges to address in dynamic environments. While field testing is essential, current methods lack diversity in assessing critical SDC scenarios. Prior research introduced simulation-based testing for SDCs, with Frenetic, a test generation approach based on Frenet space encoding, achieving a relatively high percentage of valid tests (approximately 50%) characterized by naturally smooth curves. The "minimal out-of-bound distance" is often taken as a fitness function, which we argue to be a sub-optimal metric. Instead, we show that the likelihood of leading to an out-of-bound condition can be learned by the deep-learning vanilla transformer model. We combine this "inherently learned metric" with a genetic algorithm, which has been shown to produce a high diversity of tests. To validate our approach, we conducted a large-scale empirical evaluation on a dataset comprising over 1,174 simulated test cases created to challenge the SDCs behavior. Our investigation revealed that our approach demonstrates a substantial reduction in generating non-valid test cases, increased diversity, and high accuracy in identifying safety violations during SDC test execution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: