Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STEMFold: Stochastic Temporal Manifold for Multi-Agent Interactions in the Presence of Hidden Agents (2401.14522v2)

Published 25 Jan 2024 in cs.MA

Abstract: Learning accurate, data-driven predictive models for multiple interacting agents following unknown dynamics is crucial in many real-world physical and social systems. In many scenarios, dynamics prediction must be performed under incomplete observations, i.e., only a subset of agents are known and observable from a larger topological system while the behaviors of the unobserved agents and their interactions with the observed agents are not known. When only incomplete observations of a dynamical system are available, so that some states remain hidden, it is generally not possible to learn a closed-form model in these variables using either analytic or data-driven techniques. In this work, we propose STEMFold, a spatiotemporal attention-based generative model, to learn a stochastic manifold to predict the underlying unmeasured dynamics of the multi-agent system from observations of only visible agents. Our analytical results motivate STEMFold design using a spatiotemporal graph with time anchors to effectively map the observations of visible agents to a stochastic manifold with no prior information about interaction graph topology. We empirically evaluated our method on two simulations and two real-world datasets, where it outperformed existing networks in predicting complex multiagent interactions, even with many unobserved agents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hemant Kumawat (6 papers)
  2. Biswadeep Chakraborty (22 papers)
  3. Saibal Mukhopadhyay (56 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.