Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Location Agnostic Source-Free Domain Adaptive Learning to Predict Solar Power Generation (2401.14422v2)

Published 24 Jan 2024 in cs.LG

Abstract: The prediction of solar power generation is a challenging task due to its dependence on climatic characteristics that exhibit spatial and temporal variability. The performance of a prediction model may vary across different places due to changes in data distribution, resulting in a model that works well in one region but not in others. Furthermore, as a consequence of global warming, there is a notable acceleration in the alteration of weather patterns on an annual basis. This phenomenon introduces the potential for diminished efficacy of existing models, even within the same geographical region, as time progresses. In this paper, a domain adaptive deep learning-based framework is proposed to estimate solar power generation using weather features that can solve the aforementioned challenges. A feed-forward deep convolutional network model is trained for a known location dataset in a supervised manner and utilized to predict the solar power of an unknown location later. This adaptive data-driven approach exhibits notable advantages in terms of computing speed, storage efficiency, and its ability to improve outcomes in scenarios where state-of-the-art non-adaptive methods fail. Our method has shown an improvement of $10.47 \%$, $7.44 \%$, $5.11\%$ in solar power prediction accuracy compared to best performing non-adaptive method for California (CA), Florida (FL) and New York (NY), respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets