Papers
Topics
Authors
Recent
2000 character limit reached

GPTVoiceTasker: Advancing Multi-step Mobile Task Efficiency Through Dynamic Interface Exploration and Learning (2401.14268v3)

Published 25 Jan 2024 in cs.HC

Abstract: Virtual assistants have the potential to play an important role in helping users achieves different tasks. However, these systems face challenges in their real-world usability, characterized by inefficiency and struggles in grasping user intentions. Leveraging recent advances in LLMs, we introduce GptVoiceTasker, a virtual assistant poised to enhance user experiences and task efficiency on mobile devices. GptVoiceTasker excels at intelligently deciphering user commands and executing relevant device interactions to streamline task completion. The system continually learns from historical user commands to automate subsequent usages, further enhancing execution efficiency. Our experiments affirm GptVoiceTasker's exceptional command interpretation abilities and the precision of its task automation module. In our user study, GptVoiceTasker boosted task efficiency in real-world scenarios by 34.85%, accompanied by positive participant feedback. We made GptVoiceTasker open-source, inviting further research into LLMs utilization for diverse tasks through prompt engineering and leveraging user usage data to improve efficiency.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 11 likes about this paper.