Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AR-GAN: Generative Adversarial Network-Based Defense Method Against Adversarial Attacks on the Traffic Sign Classification System of Autonomous Vehicles (2401.14232v1)

Published 31 Dec 2023 in cs.CV, cs.AI, cs.CR, and cs.LG

Abstract: This study developed a generative adversarial network (GAN)-based defense method for traffic sign classification in an autonomous vehicle (AV), referred to as the attack-resilient GAN (AR-GAN). The novelty of the AR-GAN lies in (i) assuming zero knowledge of adversarial attack models and samples and (ii) providing consistently high traffic sign classification performance under various adversarial attack types. The AR-GAN classification system consists of a generator that denoises an image by reconstruction, and a classifier that classifies the reconstructed image. The authors have tested the AR-GAN under no-attack and under various adversarial attacks, such as Fast Gradient Sign Method (FGSM), DeepFool, Carlini and Wagner (C&W), and Projected Gradient Descent (PGD). The authors considered two forms of these attacks, i.e., (i) black-box attacks (assuming the attackers possess no prior knowledge of the classifier), and (ii) white-box attacks (assuming the attackers possess full knowledge of the classifier). The classification performance of the AR-GAN was compared with several benchmark adversarial defense methods. The results showed that both the AR-GAN and the benchmark defense methods are resilient against black-box attacks and could achieve similar classification performance to that of the unperturbed images. However, for all the white-box attacks considered in this study, the AR-GAN method outperformed the benchmark defense methods. In addition, the AR-GAN was able to maintain its high classification performance under varied white-box adversarial perturbation magnitudes, whereas the performance of the other defense methods dropped abruptly at increased perturbation magnitudes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.