Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

PLCNet: Patch-wise Lane Correction Network for Automatic Lane Correction in High-definition Maps (2401.14024v1)

Published 25 Jan 2024 in cs.CV

Abstract: In High-definition (HD) maps, lane elements constitute the majority of components and demand stringent localization requirements to ensure safe vehicle navigation. Vision lane detection with LiDAR position assignment is a prevalent method to acquire initial lanes for HD maps. However, due to incorrect vision detection and coarse camera-LiDAR calibration, initial lanes may deviate from their true positions within an uncertain range. To mitigate the need for manual lane correction, we propose a patch-wise lane correction network (PLCNet) to automatically correct the positions of initial lane points in local LiDAR images that are transformed from point clouds. PLCNet first extracts multi-scale image features and crops patch (ROI) features centered at each initial lane point. By applying ROIAlign, the fix-sized ROI features are flattened into 1D features. Then, a 1D lane attention module is devised to compute instance-level lane features with adaptive weights. Finally, lane correction offsets are inferred by a multi-layer perceptron and used to correct the initial lane positions. Considering practical applications, our automatic method supports merging local corrected lanes into global corrected lanes. Through extensive experiments on a self-built dataset, we demonstrate that PLCNet achieves fast and effective initial lane correction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube