Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Synergizing Human Expertise and AI Efficiency with Language Model for Microscopy Operation and Automated Experiment Design (2401.13803v1)

Published 24 Jan 2024 in cs.HC and cond-mat.mtrl-sci

Abstract: With the advent of LLMs, in both the open source and proprietary domains, attention is turning to how to exploit such AI systems in assisting complex scientific tasks, such as material synthesis, characterization, analysis and discovery. Here, we explore the utility of LLM, particularly ChatGPT4, in combination with application program interfaces (APIs) in tasks of experimental design, programming workflows, and data analysis in scanning probe microscopy, using both in-house developed API and API given by a commercial vendor for instrument control. We find that the LLM can be especially useful in converting ideations of experimental workflows to executable code on microscope APIs. Beyond code generation, we find that the GPT4 is capable of analyzing microscopy images in a generic sense. At the same time, we find that GPT4 suffers from inability to extend beyond basic analyses or more in-depth technical experimental design. We argue that a LLM specifically fine-tuned for individual scientific domains can potentially be a better language interface for converting scientific ideations from human experts to executable workflows, such a synergy between human expertise and LLM efficiency in experimentation can open new door for accelerating scientific research, enabling effective experimental protocols archive and sharing in scientific community.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com