Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Inadequacy of common stochastic neural networks for reliable clinical decision support (2401.13657v2)

Published 24 Jan 2024 in cs.LG and cs.AI

Abstract: Widespread adoption of AI for medical decision making is still hindered due to ethical and safety-related concerns. For AI-based decision support systems in healthcare settings it is paramount to be reliable and trustworthy. Common deep learning approaches, however, have the tendency towards overconfidence under data shift. Such inappropriate extrapolation beyond evidence-based scenarios may have dire consequences. This highlights the importance of reliable estimation of local uncertainty and its communication to the end user. While stochastic neural networks have been heralded as a potential solution to these issues, this study investigates their actual reliability in clinical applications. We centered our analysis on the exemplary use case of mortality prediction for ICU hospitalizations using EHR from MIMIC3 study. For predictions on the EHR time series, Encoder-Only Transformer models were employed. Stochasticity of model functions was achieved by incorporating common methods such as Bayesian neural network layers and model ensembles. Our models achieve state of the art performance in terms of discrimination performance (AUC ROC: 0.868+-0.011, AUC PR: 0.554+-0.034) and calibration on the mortality prediction benchmark. However, epistemic uncertainty is critically underestimated by the selected stochastic deep learning methods. A heuristic proof for the responsible collapse of the posterior distribution is provided. Our findings reveal the inadequacy of commonly used stochastic deep learning approaches to reliably recognize OoD samples. In both methods, unsubstantiated model confidence is not prevented due to strongly biased functional posteriors, rendering them inappropriate for reliable clinical decision support. This highlights the need for approaches with more strictly enforced or inherent distance-awareness to known data points, e.g., using kernel-based techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube