Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum natural gradient without monotonicity (2401.13237v1)

Published 24 Jan 2024 in quant-ph, cond-mat.stat-mech, cs.IT, math.IT, physics.comp-ph, and stat.ML

Abstract: Natural gradient (NG) is an information-geometric optimization method that plays a crucial role, especially in the estimation of parameters for machine learning models like neural networks. To apply NG to quantum systems, the quantum natural gradient (QNG) was introduced and utilized for noisy intermediate-scale devices. Additionally, a mathematically equivalent approach to QNG, known as the stochastic reconfiguration method, has been implemented to enhance the performance of quantum Monte Carlo methods. It is worth noting that these methods are based on the symmetric logarithmic derivative (SLD) metric, which is one of the monotone metrics. So far, monotonicity has been believed to be a guiding principle to construct a geometry in physics. In this paper, we propose generalized QNG by removing the condition of monotonicity. Initially, we demonstrate that monotonicity is a crucial condition for conventional QNG to be optimal. Subsequently, we provide analytical and numerical evidence showing that non-monotone QNG outperforms conventional QNG based on the SLD metric in terms of convergence speed.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com