Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Simultaneous exercise recognition and evaluation in prescribed routines: Approach to virtual coaches (2401.12857v1)

Published 23 Jan 2024 in cs.HC and eess.SP

Abstract: Home-based physical therapies are effective if the prescribed exercises are correctly executed and patients adhere to these routines. This is specially important for older adults who can easily forget the guidelines from therapists. Inertial Measurement Units (IMUs) are commonly used for tracking exercise execution giving information of patients' motion data. In this work, we propose the use of Machine Learning techniques to recognize which exercise is being carried out and to assess if the recognized exercise is properly executed by using data from four IMUs placed on the person limbs. To the best of our knowledge, both tasks have never been addressed together as a unique complex task before. However, their combination is needed for the complete characterization of the performance of physical therapies. We evaluate the performance of six machine learning classifiers in three contexts: recognition and evaluation in a single classifier, recognition of correct exercises, excluding the wrongly performed exercises, and a two-stage approach that first recognizes the exercise and then evaluates it. We apply our proposal to a set of 8 exercises of the upper-and lower-limbs designed for maintaining elderly people health status. To do so, the motion of volunteers were monitored with 4 IMUs. We obtain accuracies of 88.4 \% and the 91.4 \% in the two initial scenarios. In the third one, the recognition provides an accuracy of 96.2 \%, whereas the exercise evaluation varies between 93.6 \% and 100.0 \%. This work proves the feasibility of IMUs for a complete monitoring of physical therapies in which we can get information of which exercise is being performed and its quality, as a basis for designing virtual coaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets