Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Can Large Language Models Write Parallel Code? (2401.12554v3)

Published 23 Jan 2024 in cs.DC and cs.AI

Abstract: LLMs are increasingly becoming a popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for complex programs. In this paper, we study the capabilities of state-of-the-art LLMs to generate parallel code. In order to evaluate LLMs, we create a benchmark, ParEval, consisting of prompts that represent 420 different coding tasks related to scientific and parallel computing. We use ParEval to evaluate the effectiveness of several state-of-the-art open- and closed-source LLMs on these tasks. We introduce novel metrics for evaluating the performance of generated code, and use them to explore how well each LLM performs for 12 different computational problem types and six different parallel programming models.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

HackerNews