Papers
Topics
Authors
Recent
2000 character limit reached

Can Large Language Models Write Parallel Code? (2401.12554v3)

Published 23 Jan 2024 in cs.DC and cs.AI

Abstract: LLMs are increasingly becoming a popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for complex programs. In this paper, we study the capabilities of state-of-the-art LLMs to generate parallel code. In order to evaluate LLMs, we create a benchmark, ParEval, consisting of prompts that represent 420 different coding tasks related to scientific and parallel computing. We use ParEval to evaluate the effectiveness of several state-of-the-art open- and closed-source LLMs on these tasks. We introduce novel metrics for evaluating the performance of generated code, and use them to explore how well each LLM performs for 12 different computational problem types and six different parallel programming models.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 13 likes about this paper.

HackerNews