Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-Supervised Vision Transformers Are Efficient Segmentation Learners for Imperfect Labels (2401.12535v1)

Published 23 Jan 2024 in cs.CV

Abstract: This study demonstrates a cost-effective approach to semantic segmentation using self-supervised vision transformers (SSVT). By freezing the SSVT backbone and training a lightweight segmentation head, our approach effectively utilizes imperfect labels, thereby improving robustness to label imperfections. Empirical experiments show significant performance improvements over existing methods for various annotation types, including scribble, point-level, and image-level labels. The research highlights the effectiveness of self-supervised vision transformers in dealing with imperfect labels, providing a practical and efficient solution for semantic segmentation while reducing annotation costs. Through extensive experiments, we confirm that our method outperforms baseline models for all types of imperfect labels. Especially under the zero-shot vision-language-model-based label, our model exhibits 11.5\%p performance gain compared to the baseline.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.