Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

NIV-SSD: Neighbor IoU-Voting Single-Stage Object Detector From Point Cloud (2401.12447v1)

Published 23 Jan 2024 in cs.CV

Abstract: Previous single-stage detectors typically suffer the misalignment between localization accuracy and classification confidence. To solve the misalignment problem, we introduce a novel rectification method named neighbor IoU-voting (NIV) strategy. Typically, classification and regression are treated as separate branches, making it challenging to establish a connection between them. Consequently, the classification confidence cannot accurately reflect the regression quality. NIV strategy can serve as a bridge between classification and regression branches by calculating two types of statistical data from the regression output to correct the classification confidence. Furthermore, to alleviate the imbalance of detection accuracy for complete objects with dense points (easy objects) and incomplete objects with sparse points (difficult objects), we propose a new data augmentation scheme named object resampling. It undersamples easy objects and oversamples difficult objects by randomly transforming part of easy objects into difficult objects. Finally, combining the NIV strategy and object resampling augmentation, we design an efficient single-stage detector termed NIV-SSD. Extensive experiments on several datasets indicate the effectiveness of the NIV strategy and the competitive performance of the NIV-SSD detector. The code will be available at https://github.com/Say2L/NIV-SSD.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub