Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Secure Federated Learning Approaches to Diagnosing COVID-19 (2401.12438v1)

Published 23 Jan 2024 in eess.IV, cs.CV, cs.DC, and cs.LG

Abstract: The recent pandemic has underscored the importance of accurately diagnosing COVID-19 in hospital settings. A major challenge in this regard is differentiating COVID-19 from other respiratory illnesses based on chest X-rays, compounded by the restrictions of HIPAA compliance which limit the comparison of patient X-rays. This paper introduces a HIPAA-compliant model to aid in the diagnosis of COVID-19, utilizing federated learning. Federated learning is a distributed machine learning approach that allows for algorithm training across multiple decentralized devices using local data samples, without the need for data sharing. Our model advances previous efforts in chest X-ray diagnostic models. We examined leading models from established competitions in this domain and developed our own models tailored to be effective with specific hospital data. Considering the model's operation in a federated learning context, we explored the potential impact of biased data updates on the model's performance. To enhance hospital understanding of the model's decision-making process and to verify that the model is not focusing on irrelevant features, we employed a visualization technique that highlights key features in chest X-rays indicative of a positive COVID-19 diagnosis.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.