Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convex-Concave Zero-sum Markov Stackelberg Games (2401.12437v1)

Published 23 Jan 2024 in cs.GT

Abstract: Zero-sum Markov Stackelberg games can be used to model myriad problems, in domains ranging from economics to human robot interaction. In this paper, we develop policy gradient methods that solve these games in continuous state and action settings using noisy gradient estimates computed from observed trajectories of play. When the games are convex-concave, we prove that our algorithms converge to Stackelberg equilibrium in polynomial time. We also show that reach-avoid problems are naturally modeled as convex-concave zero-sum Markov Stackelberg games, and that Stackelberg equilibrium policies are more effective than their Nash counterparts in these problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: