Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ACS: Concurrent Kernel Execution on Irregular, Input-Dependent Computational Graphs (2401.12377v1)

Published 22 Jan 2024 in cs.AR

Abstract: GPUs are widely used to accelerate many important classes of workloads today. However, we observe that several important emerging classes of workloads, including simulation engines for deep reinforcement learning and dynamic neural networks, are unable to fully utilize the massive parallelism that GPUs offer. These applications tend to have kernels that are small in size, i.e., have few thread blocks that do not saturate compute resources. Executing independent kernels concurrently is a promising approach to improve parallelism and utilization. However, this inter-kernel concurrency is difficult to leverage in such workloads with existing approaches: First, the inter-kernel dependencies and computational graph are input-dependent and vary each time the application is executed. Second, the computational graphs tend to be irregular, requiring fine-grain scheduling and synchronization; thus incurring significant synchronization overheads if kernel execution is parallelized. In this work, we propose ACS, a framework that enables lightweight detection of inter-kernel dependencies and low overhead kernel scheduling at runtime. The key idea behind ACS is to perform inter-kernel dependency checks for a small window of kernels at runtime, similar to out-of order instruction scheduling. This enables concurrent execution of kernels in applications whose computational graphs are input dependent and require fine-grained scheduling. We propose ACS-SW, a software-only open-source implementation of ACS and ACS-HW, a hardware-software cooperative implementation. ACS-HW further reduces synchronization overheads by reducing communication between the CPU and GPU. We evaluate ACS for deep RL simulation and dynamic DNNs on both real hardware and a GPU simulator. We demonstrate speedups of up to 2.19x (1.56x on average) by improving GPU utilization with concurrent kernel execution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube