Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fuzzy quantitative attack tree analysis (2401.12346v1)

Published 22 Jan 2024 in cs.CR

Abstract: Attack trees are important for security, as they help to identify weaknesses and vulnerabilities in a system. Quantitative attack tree analysis supports a number security metrics, which formulate important KPIs such as the shortest, most likely and cheapest attacks. A key bottleneck in quantitative analysis is that the values are usually not known exactly, due to insufficient data and/or lack of knowledge. Fuzzy logic is a prominent framework to handle such uncertain values, with applications in numerous domains. While several studies proposed fuzzy approaches to attack tree analysis, none of them provided a firm definition of fuzzy metric values or generic algorithms for computation of fuzzy metrics. In this work, we define a generic formulation for fuzzy metric values that applies to most quantitative metrics. The resulting metric value is a fuzzy number obtained by following Zadeh's extension principle, obtained when we equip the basis attack steps, i.e., the leaves of the attack trees, with fuzzy numbers. In addition, we prove a modular decomposition theorem that yields a bottom-up algorithm to efficiently calculate the top fuzzy metric value.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.