Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On-Time Delivery in Crowdshipping Systems: An Agent-Based Approach Using Streaming Data (2401.12108v1)

Published 22 Jan 2024 in cs.AI, cs.LG, and cs.MA

Abstract: In parcel delivery, the "last mile" from the parcel hub to the customer is costly, especially for time-sensitive delivery tasks that have to be completed within hours after arrival. Recently, crowdshipping has attracted increased attention as a new alternative to traditional delivery modes. In crowdshipping, private citizens ("the crowd") perform short detours in their daily lives to contribute to parcel delivery in exchange for small incentives. However, achieving desirable crowd behavior is challenging as the crowd is highly dynamic and consists of autonomous, self-interested individuals. Leveraging crowdshipping for time-sensitive deliveries remains an open challenge. In this paper, we present an agent-based approach to on-time parcel delivery with crowds. Our system performs data stream processing on the couriers' smartphone sensor data to predict delivery delays. Whenever a delay is predicted, the system attempts to forge an agreement for transferring the parcel from the current deliverer to a more promising courier nearby. Our experiments show that through accurate delay predictions and purposeful task transfers many delays can be prevented that would occur without our approach.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.