Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Comparative Study of Numerical Methods for Approximating the Solutions of a Macroscopic Automated-Vehicle Traffic Flow Model (2401.11787v1)

Published 22 Jan 2024 in math.NA and cs.NA

Abstract: In this paper, a particle method is used to approximate the solutions of a "fluid-like" macroscopic traffic flow model for automated vehicles. It is shown that this method preserves certain differential inequalities that hold for the macroscopic traffic model: mass is preserved, the mechanical energy is decaying and an energy functional is also decaying. To demonstrate the advantages of the particle method under consideration, a comparison with other numerical methods for viscous compressible fluid models is provided. Since the solutions of the macroscopic traffic model can be approximated by the solutions of a reduced model consisting of a single nonlinear heat-type partial differential equation, the numerical solutions produced by the particle method are also compared with the numerical solutions of the reduced model. Finally, a traffic simulation scenario and a comparison with the Aw-Rascle-Zhang (ARZ) model are provided, illustrating the advantages of the use of automated vehicles.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: