Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

ADA-GNN: Atom-Distance-Angle Graph Neural Network for Crystal Material Property Prediction (2401.11768v1)

Published 22 Jan 2024 in cs.LG and cond-mat.mtrl-sci

Abstract: Property prediction is a fundamental task in crystal material research. To model atoms and structures, structures represented as graphs are widely used and graph learning-based methods have achieved significant progress. Bond angles and bond distances are two key structural information that greatly influence crystal properties. However, most of the existing works only consider bond distances and overlook bond angles. The main challenge lies in the time cost of handling bond angles, which leads to a significant increase in inference time. To solve this issue, we first propose a crystal structure modeling based on dual scale neighbor partitioning mechanism, which uses a larger scale cutoff for edge neighbors and a smaller scale cutoff for angle neighbors. Then, we propose a novel Atom-Distance-Angle Graph Neural Network (ADA-GNN) for property prediction tasks, which can process node information and structural information separately. The accuracy of predictions and inference time are improved with the dual scale modeling and the specially designed architecture of ADA-GNN. The experimental results validate that our approach achieves state-of-the-art results in two large-scale material benchmark datasets on property prediction tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.