Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ADA-GNN: Atom-Distance-Angle Graph Neural Network for Crystal Material Property Prediction (2401.11768v1)

Published 22 Jan 2024 in cs.LG and cond-mat.mtrl-sci

Abstract: Property prediction is a fundamental task in crystal material research. To model atoms and structures, structures represented as graphs are widely used and graph learning-based methods have achieved significant progress. Bond angles and bond distances are two key structural information that greatly influence crystal properties. However, most of the existing works only consider bond distances and overlook bond angles. The main challenge lies in the time cost of handling bond angles, which leads to a significant increase in inference time. To solve this issue, we first propose a crystal structure modeling based on dual scale neighbor partitioning mechanism, which uses a larger scale cutoff for edge neighbors and a smaller scale cutoff for angle neighbors. Then, we propose a novel Atom-Distance-Angle Graph Neural Network (ADA-GNN) for property prediction tasks, which can process node information and structural information separately. The accuracy of predictions and inference time are improved with the dual scale modeling and the specially designed architecture of ADA-GNN. The experimental results validate that our approach achieves state-of-the-art results in two large-scale material benchmark datasets on property prediction tasks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.