Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Beamforming for Downlink Multi-Cell Systems: A Bilevel Optimization Perspective (2401.11409v1)

Published 21 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Utilization of inter-base station cooperation for information processing has shown great potential in enhancing the overall quality of communication services (QoS) in wireless communication networks. Nevertheless, such cooperations require the knowledge of channel state information (CSI) at base stations (BSs), which is assumed to be perfectly known. However, CSI errors are inevitable in practice which necessitates beamforming techniques that can achieve robust performance in the presence of channel estimation errors. Existing approaches relax the robust beamforming design problems into semidefinite programming (SDP), which can only achieve a solution that is far from being optimal. To this end, this paper views robust beamforming design problems from a bilevel optimization perspective. In particular, we focus on maximizing the worst-case weighted sum-rate (WSR) in the downlink multi-cell multi-user multiple-input single-output (MISO) system considering bounded CSI errors. We first reformulate this problem into a bilevel optimization problem and then develop an efficient algorithm based on the cutting plane method. A distributed optimization algorithm has also been developed to facilitate the parallel processing in practical settings. Numerical results are provided to confirm the effectiveness of the proposed algorithm in terms of performance and complexity, particularly in the presence of CSI uncertainties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.