AFS-BM: Enhancing Model Performance through Adaptive Feature Selection with Binary Masking (2401.11250v2)
Abstract: We study the problem of feature selection in general ML context, which is one of the most critical subjects in the field. Although, there exist many feature selection methods, however, these methods face challenges such as scalability, managing high-dimensional data, dealing with correlated features, adapting to variable feature importance, and integrating domain knowledge. To this end, we introduce the "Adaptive Feature Selection with Binary Masking" (AFS-BM) which remedies these problems. AFS-BM achieves this by joint optimization for simultaneous feature selection and model training. In particular, we do the joint optimization and binary masking to continuously adapt the set of features and model parameters during the training process. This approach leads to significant improvements in model accuracy and a reduction in computational requirements. We provide an extensive set of experiments where we compare AFS-BM with the established feature selection methods using well-known datasets from real-life competitions. Our results show that AFS-BM makes significant improvement in terms of accuracy and requires significantly less computational complexity. This is due to AFS-BM's ability to dynamically adjust to the changing importance of features during the training process, which an important contribution to the field. We openly share our code for the replicability of our results and to facilitate further research.
- \APACrefYearMonthDay2021Aug01. \BBOQ\APACrefatitleTRU-NET: a deep learning approach to high resolution prediction of rainfall Tru-net: a deep learning approach to high resolution prediction of rainfall.\BBCQ \APACjournalVolNumPagesMachine Learning11082035–2062, {APACrefDOI} https://doi.org/10.1007/s10994-021-06022-6 {APACrefURL} https://doi.org/10.1007/s10994-021-06022-6 \PrintBackRefs\CurrentBib Aguiar \BOthers. [\APACyear2023] \APACinsertmetastarAguiar2023{APACrefauthors}Aguiar, G., Krawczyk, B.\BCBL Cano, A. \APACrefYearMonthDay2023Jun29. \BBOQ\APACrefatitleA survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-023-06353-6 {APACrefURL} https://doi.org/10.1007/s10994-023-06353-6 \PrintBackRefs\CurrentBib Akbilgic [\APACyear2013] \APACinsertmetastarmisc_istanbul_stock_exchange_247{APACrefauthors}Akbilgic, O. \APACrefYearMonthDay2013. \APACrefbtitleISTANBUL STOCK EXCHANGE. ISTANBUL STOCK EXCHANGE. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C54P4J \PrintBackRefs\CurrentBib Atan \BOthers. [\APACyear2019] \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarAguiar2023{APACrefauthors}Aguiar, G., Krawczyk, B.\BCBL Cano, A. \APACrefYearMonthDay2023Jun29. \BBOQ\APACrefatitleA survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-023-06353-6 {APACrefURL} https://doi.org/10.1007/s10994-023-06353-6 \PrintBackRefs\CurrentBib Akbilgic [\APACyear2013] \APACinsertmetastarmisc_istanbul_stock_exchange_247{APACrefauthors}Akbilgic, O. \APACrefYearMonthDay2013. \APACrefbtitleISTANBUL STOCK EXCHANGE. ISTANBUL STOCK EXCHANGE. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C54P4J \PrintBackRefs\CurrentBib Atan \BOthers. [\APACyear2019] \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_istanbul_stock_exchange_247{APACrefauthors}Akbilgic, O. \APACrefYearMonthDay2013. \APACrefbtitleISTANBUL STOCK EXCHANGE. ISTANBUL STOCK EXCHANGE. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C54P4J \PrintBackRefs\CurrentBib Atan \BOthers. [\APACyear2019] \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023Jun29. \BBOQ\APACrefatitleA survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-023-06353-6 {APACrefURL} https://doi.org/10.1007/s10994-023-06353-6 \PrintBackRefs\CurrentBib Akbilgic [\APACyear2013] \APACinsertmetastarmisc_istanbul_stock_exchange_247{APACrefauthors}Akbilgic, O. \APACrefYearMonthDay2013. \APACrefbtitleISTANBUL STOCK EXCHANGE. ISTANBUL STOCK EXCHANGE. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C54P4J \PrintBackRefs\CurrentBib Atan \BOthers. [\APACyear2019] \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_istanbul_stock_exchange_247{APACrefauthors}Akbilgic, O. \APACrefYearMonthDay2013. \APACrefbtitleISTANBUL STOCK EXCHANGE. ISTANBUL STOCK EXCHANGE. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C54P4J \PrintBackRefs\CurrentBib Atan \BOthers. [\APACyear2019] \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarmisc_istanbul_stock_exchange_247{APACrefauthors}Akbilgic, O. \APACrefYearMonthDay2013. \APACrefbtitleISTANBUL STOCK EXCHANGE. ISTANBUL STOCK EXCHANGE. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C54P4J \PrintBackRefs\CurrentBib Atan \BOthers. [\APACyear2019] \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarAtan2019{APACrefauthors}Atan, O., Zame, W.R., Feng, Q.\BCBL van der Schaar, M. \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019Jun01. \BBOQ\APACrefatitleConstructing effective personalized policies using counterfactual inference from biased data sets with many features Constructing effective personalized policies using counterfactual inference from biased data sets with many features.\BBCQ \APACjournalVolNumPagesMachine Learning1086945–970, {APACrefDOI} https://doi.org/10.1007/s10994-018-5768-3 {APACrefURL} https://doi.org/10.1007/s10994-018-5768-3 \PrintBackRefs\CurrentBib Bellman [\APACyear1961] \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarbellman1961adaptive{APACrefauthors}Bellman, R.E. \APACrefYear1961. \APACrefbtitleAdaptive Control Processes: A Guided Tour Adaptive control processes: A guided tour. \APACaddressPublisherPrincetonPrinceton University Press. {APACrefURL} [2024-01-14]https://doi.org/10.1515/9781400874668 \PrintBackRefs\CurrentBib Bishop [\APACyear2006] \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarbishop2006pattern{APACrefauthors}Bishop, C.M. \APACrefYear2006. \APACrefbtitlePattern Recognition and Machine Learning (Information Science and Statistics) Pattern recognition and machine learning (information science and statistics). \APACaddressPublisherBerlin, HeidelbergSpringer-Verlag. \PrintBackRefs\CurrentBib Boullé [\APACyear2006] \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarBoullé2006{APACrefauthors}Boullé, M. \APACrefYearMonthDay2006Oct01. \BBOQ\APACrefatitleMODL: A Bayes optimal discretization method for continuous attributes Modl: A bayes optimal discretization method for continuous attributes.\BBCQ \APACjournalVolNumPagesMachine Learning651131–165, {APACrefDOI} https://doi.org/10.1007/s10994-006-8364-x {APACrefURL} https://doi.org/10.1007/s10994-006-8364-x \PrintBackRefs\CurrentBib Breiman [\APACyear2001] \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarbreiman2001random{APACrefauthors}Breiman, L. \APACrefYearMonthDay2001Oct01. \BBOQ\APACrefatitleRandom Forests Random forests.\BBCQ \APACjournalVolNumPagesMachine Learning4515–32, {APACrefDOI} https://doi.org/10.1023/A:1010933404324 {APACrefURL} https://doi.org/10.1023/A:1010933404324 \PrintBackRefs\CurrentBib Capobianco [\APACyear2022] \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarcapobianco2022highdimensional{APACrefauthors}Capobianco, E. \APACrefYearMonthDay2022Mar01. \BBOQ\APACrefatitleHigh-dimensional role of AI and machine learning in cancer research High-dimensional role of ai and machine learning in cancer research.\BBCQ \APACjournalVolNumPagesBritish Journal of Cancer1264523–532, {APACrefDOI} https://doi.org/10.1038/s41416-021-01689-z {APACrefURL} https://doi.org/10.1038/s41416-021-01689-z \PrintBackRefs\CurrentBib Chen \BBA Guestrin [\APACyear2016] \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarchen2016xgboost{APACrefauthors}Chen, T.\BCBT \BBA Guestrin, C. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleXgboost: A scalable tree boosting system Xgboost: A scalable tree boosting system.\BBCQ \APACrefbtitleProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (\BPGS 785–794). \PrintBackRefs\CurrentBib Elghazel \BBA Aussem [\APACyear2015] \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarElghazel2015{APACrefauthors}Elghazel, H.\BCBT \BBA Aussem, A. \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015Jan01. \BBOQ\APACrefatitleUnsupervised feature selection with ensemble learning Unsupervised feature selection with ensemble learning.\BBCQ \APACjournalVolNumPagesMachine Learning981157–180, {APACrefDOI} https://doi.org/10.1007/s10994-013-5337-8 {APACrefURL} https://doi.org/10.1007/s10994-013-5337-8 \PrintBackRefs\CurrentBib Fontanella [\APACyear2022] \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarmisc_darwin_732{APACrefauthors}Fontanella, F. \APACrefYearMonthDay2022. \APACrefbtitleDARWIN. DARWIN. \APAChowpublishedUCI Machine Learning Repository. \APACrefnoteDOI: https://doi.org/10.24432/C55D0K \PrintBackRefs\CurrentBib Friedman [\APACyear2001] \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarfriedman{APACrefauthors}Friedman, J.H. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleGreedy function approximation: A gradient boosting machine. Greedy function approximation: A gradient boosting machine.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics2951189 – 1232, {APACrefDOI} https://doi.org/10.1214/aos/1013203451 {APACrefURL} https://doi.org/10.1214/aos/1013203451 \PrintBackRefs\CurrentBib Gama \BOthers. [\APACyear2013] \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarGama2013{APACrefauthors}Gama, J., Sebastião, R.\BCBL Rodrigues, P.P. \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013Mar01. \BBOQ\APACrefatitleOn evaluating stream learning algorithms On evaluating stream learning algorithms.\BBCQ \APACjournalVolNumPagesMachine Learning903317–346, {APACrefDOI} https://doi.org/10.1007/s10994-012-5320-9 {APACrefURL} https://doi.org/10.1007/s10994-012-5320-9 \PrintBackRefs\CurrentBib Goodfellow \BOthers. [\APACyear2016] \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargoodfellow2016deep{APACrefauthors}Goodfellow, I., Bengio, Y.\BCBL Courville, A. \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYear2016. \APACrefbtitleDeep Learning Deep learning. \APACaddressPublisherMIT Press. \APACrefnotehttp://www.deeplearningbook.org \PrintBackRefs\CurrentBib Guyon \BBA Elisseeff [\APACyear2003] \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2003introduction{APACrefauthors}Guyon, I.\BCBT \BBA Elisseeff, A. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ (\BVOL 3, \BPG 1157–1182). \APACaddressPublisherJMLR.org. \PrintBackRefs\CurrentBib Guyon \BOthers. [\APACyear2002] \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarguyon2002gene{APACrefauthors}Guyon, I., Weston, J., Barnhill, S.\BCBL Vapnik, V. \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2002Jan01. \BBOQ\APACrefatitleGene Selection for Cancer Classification using Support Vector Machines Gene selection for cancer classification using support vector machines.\BBCQ \APACjournalVolNumPagesMachine Learning461389–422, {APACrefDOI} https://doi.org/10.1023/A:1012487302797 {APACrefURL} https://doi.org/10.1023/A:1012487302797 \PrintBackRefs\CurrentBib Hancer [\APACyear2021] \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarHancer2021{APACrefauthors}Hancer, E. \APACrefYearMonthDay2021May12. \BBOQ\APACrefatitleAn improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme.\BBCQ \APACjournalVolNumPagesMachine Learning, {APACrefDOI} https://doi.org/10.1007/s10994-021-05990-z {APACrefURL} https://doi.org/10.1007/s10994-021-05990-z \PrintBackRefs\CurrentBib Huynh \BOthers. [\APACyear2023] \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarHuynh2023{APACrefauthors}Huynh, V.Q.P., Fürnkranz, J.\BCBL Beck, F. \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023Feb01. \BBOQ\APACrefatitleEfficient learning of large sets of locally optimal classification rules Efficient learning of large sets of locally optimal classification rules.\BBCQ \APACjournalVolNumPagesMachine Learning1122571–610, {APACrefDOI} https://doi.org/10.1007/s10994-022-06290-w {APACrefURL} https://doi.org/10.1007/s10994-022-06290-w \PrintBackRefs\CurrentBib Hyndman \BOthers. [\APACyear2008] \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarhyndman2008forecasting{APACrefauthors}Hyndman, R., Koehler, A., Ord, J.\BCBL Snyder, R. \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYear2008. \APACrefbtitleForecasting with Exponential Smoothing: The State Space Approach Forecasting with exponential smoothing: The state space approach. \APACaddressPublisherSpringer Berlin Heidelberg. {APACrefURL} https://books.google.com.tr/books?id=GSyzox8Lu9YC \PrintBackRefs\CurrentBib Jenul \BOthers. [\APACyear2022] \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarJenul2022{APACrefauthors}Jenul, A., Schrunner, S., Pilz, J.\BCBL Tomic, O. \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022Oct01. \BBOQ\APACrefatitleA user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS) A user-guided bayesian framework for ensemble feature selection in life science applications (ubayfs).\BBCQ \APACjournalVolNumPagesMachine Learning111103897–3923, {APACrefDOI} https://doi.org/10.1007/s10994-022-06221-9 {APACrefURL} https://doi.org/10.1007/s10994-022-06221-9 \PrintBackRefs\CurrentBib Kira \BBA Rendell [\APACyear1992] \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarkira1992practical{APACrefauthors}Kira, K.\BCBT \BBA Rendell, L.A. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1992. \BBOQ\APACrefatitleA Practical Approach to Feature Selection A practical approach to feature selection.\BBCQ D. Sleeman \BBA P. Edwards (\BEDS), \APACrefbtitleMachine Learning Proceedings 1992 Machine learning proceedings 1992 (\BPGS 249–256). \APACaddressPublisherSan Francisco (CA)Morgan Kaufmann. {APACrefURL} https://www.sciencedirect.com/science/article/pii/B9781558602472500371 \PrintBackRefs\CurrentBib Makridakis \BOthers. [\APACyear2020] \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarMakridakis{APACrefauthors}Makridakis, S., Spiliotis, E.\BCBL Assimakopoulos, V. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe M4 Competition: 100,000 time series and 61 forecasting methods The M4 Competition: 100,000 time series and 61 forecasting methods.\BBCQ \APACjournalVolNumPagesInternational Journal of Forecasting36154–74, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S0169207019301128 \APACrefnoteM4 Competition \PrintBackRefs\CurrentBib Mariello \BBA Battiti [\APACyear2018] \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastar8361143{APACrefauthors}Mariello, A.\BCBT \BBA Battiti, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Based on the Neighborhood Entropy Feature selection based on the neighborhood entropy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems29126313–6322, {APACrefDOI} https://doi.org/10.1109/TNNLS.2018.2830700 \PrintBackRefs\CurrentBib Muthukrishnan \BBA Rohini [\APACyear2016] \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarmr2016lasso{APACrefauthors}Muthukrishnan, R.\BCBT \BBA Rohini, R. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleLASSO: A feature selection technique in predictive modeling for machine learning Lasso: A feature selection technique in predictive modeling for machine learning.\BBCQ \APACrefbtitle2016 IEEE International Conference on Advances in Computer Applications (ICACA) 2016 ieee international conference on advances in computer applications (icaca) (\BPGS 18–20). \PrintBackRefs\CurrentBib Natekin \BBA Knoll [\APACyear2013] \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_tutorial_2013{APACrefauthors}Natekin, A.\BCBT \BBA Knoll, A. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleGradient boosting machines, a tutorial Gradient boosting machines, a tutorial.\BBCQ \APACjournalVolNumPagesFrontiers in Neurorobotics7, {APACrefDOI} https://doi.org/10.3389/fnbot.2013.00021 {APACrefURL} https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021 \PrintBackRefs\CurrentBib Neumann \BOthers. [\APACyear2005] \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarNeumann2005{APACrefauthors}Neumann, J., Schnörr, C.\BCBL Steidl, G. \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005Nov01. \BBOQ\APACrefatitleCombined SVM-Based Feature Selection and Classification Combined svm-based feature selection and classification.\BBCQ \APACjournalVolNumPagesMachine Learning611129–150, {APACrefDOI} https://doi.org/10.1007/s10994-005-1505-9 {APACrefURL} https://doi.org/10.1007/s10994-005-1505-9 \PrintBackRefs\CurrentBib Peng \BOthers. [\APACyear2005] \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarpeng2005feature{APACrefauthors}Peng, H., Long, F.\BCBL Ding, C. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence2781226–1238, {APACrefDOI} https://doi.org/10.1109/TPAMI.2005.159 \PrintBackRefs\CurrentBib Ramezan [\APACyear2022] \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastarramezan2022transferability{APACrefauthors}Ramezan, C.A. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTransferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification Transferability of recursive feature elimination (rfe)-derived feature sets for support vector machine land cover classification.\BBCQ \APACjournalVolNumPagesRemote Sensing1424, {APACrefDOI} https://doi.org/10.3390/rs14246218 {APACrefURL} https://www.mdpi.com/2072-4292/14/24/6218 \PrintBackRefs\CurrentBib Rebbapragada \BOthers. [\APACyear2009] \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRebbapragada2009{APACrefauthors}Rebbapragada, U., Protopapas, P., Brodley, C.E.\BCBL Alcock, C. \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2009Mar01. \BBOQ\APACrefatitleFinding anomalous periodic time series Finding anomalous periodic time series.\BBCQ \APACjournalVolNumPagesMachine Learning743281–313, {APACrefDOI} https://doi.org/10.1007/s10994-008-5093-3 {APACrefURL} https://doi.org/10.1007/s10994-008-5093-3 \PrintBackRefs\CurrentBib Rumelhart \BOthers. [\APACyear1986] \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarRumelhart1986{APACrefauthors}Rumelhart, D.E., Hinton, G.E.\BCBL Williams, R.J. \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1986Oct01. \BBOQ\APACrefatitleLearning representations by back-propagating errors Learning representations by back-propagating errors.\BBCQ \APACjournalVolNumPagesNature3236088533–536, {APACrefDOI} https://doi.org/10.1038/323533a0 {APACrefURL} https://doi.org/10.1038/323533a0 \PrintBackRefs\CurrentBib Saeys \BOthers. [\APACyear2007] \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsaeys2007review{APACrefauthors}Saeys, Y., Inza, I.\BCBL Larrañaga, P. \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay200708. \BBOQ\APACrefatitleA review of feature selection techniques in bioinformatics A review of feature selection techniques in bioinformatics.\BBCQ \APACjournalVolNumPagesBioinformatics23192507–2517, {APACrefDOI} https://doi.org/10.1093/bioinformatics/btm344 {APACrefURL} https://doi.org/10.1093/bioinformatics/btm344 https://academic.oup.com/bioinformatics/article-pdf/23/19/2507/49857541/bioinformatics_23_19_2507.pdf \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2008] \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarShen2008{APACrefauthors}Shen, K\BHBIQ., Ong, C\BHBIJ., Li, X\BHBIP.\BCBL Wilder-Smith, E.P.V. \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008Jan01. \BBOQ\APACrefatitleFeature selection via sensitivity analysis of SVM probabilistic outputs Feature selection via sensitivity analysis of svm probabilistic outputs.\BBCQ \APACjournalVolNumPagesMachine Learning7011–20, {APACrefDOI} https://doi.org/10.1007/s10994-007-5025-7 {APACrefURL} https://doi.org/10.1007/s10994-007-5025-7 \PrintBackRefs\CurrentBib Singha \BBA Shenoy [\APACyear2018] \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarSingha2018{APACrefauthors}Singha, S.\BCBT \BBA Shenoy, P.P. \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018Dec01. \BBOQ\APACrefatitleAn adaptive heuristic for feature selection based on complementarity An adaptive heuristic for feature selection based on complementarity.\BBCQ \APACjournalVolNumPagesMachine Learning107122027–2071, {APACrefDOI} https://doi.org/10.1007/s10994-018-5728-y {APACrefURL} https://doi.org/10.1007/s10994-018-5728-y \PrintBackRefs\CurrentBib Sun \BBA Dai [\APACyear2018] \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarsun2018distributed{APACrefauthors}Sun, C.\BCBT \BBA Dai, R. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDistributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm Distributed optimization for convex mixed-integer programs based on projected subgradient algorithm.\BBCQ \APACrefbtitle2018 IEEE Conference on Decision and Control (CDC) 2018 ieee conference on decision and control (cdc) (\BPGS 2581–2586). \PrintBackRefs\CurrentBib Tibshirani [\APACyear1996] \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACinsertmetastartibshirani1996regression{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay19962024/01/14/. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society. Series B (Methodological)581267–288, {APACrefURL} http://www.jstor.org/stable/2346178 \APACrefnoteFull publication date: 1996 \PrintBackRefs\CurrentBib Ts’o \BOthers. [\APACyear1986] \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarjneurosci.6.4.1160{APACrefauthors}Ts’o, D.Y., Gilbert, C.D.\BCBL Wiesel, T.N. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1986. \BBOQ\APACrefatitleRelationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis.\BBCQ \APACjournalVolNumPagesThe Journal of neuroscience : the official journal of the Society for Neuroscience641160–1170, {APACrefDOI} https://doi.org/10.1523/JNEUROSCI.06-04-01160.1986 \APACrefnotePMID: 3701413 \PrintBackRefs\CurrentBib Viola \BBA Wells III [\APACyear1997] \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastaralignment2000maximization{APACrefauthors}Viola, P.\BCBT \BBA Wells III, W.M. \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1997Sep01. \BBOQ\APACrefatitleAlignment by Maximization of Mutual Information Alignment by maximization of mutual information.\BBCQ \APACjournalVolNumPagesInternational Journal of Computer Vision242137–154, {APACrefDOI} https://doi.org/10.1023/A:1007958904918 {APACrefURL} https://doi.org/10.1023/A:1007958904918 \PrintBackRefs\CurrentBib N. Zhang \BOthers. [\APACyear2022] \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastarzhang2022forest{APACrefauthors}Zhang, N., Chen, M., Yang, F., Yang, C., Yang, P., Gao, Y.\BDBLPeng, D. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleForest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in baoding city, north china.\BBCQ \APACjournalVolNumPagesRemote Sensing1418, {APACrefDOI} https://doi.org/10.3390/rs14184434 {APACrefURL} https://www.mdpi.com/2072-4292/14/18/4434 \PrintBackRefs\CurrentBib W. Zhang \BOthers. [\APACyear2021] \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib \APACinsertmetastargbm_prediction_2020{APACrefauthors}Zhang, W., Wu, C., Zhong, H., Li, Y.\BCBL Wang, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization Prediction of undrained shear strength using extreme gradient boosting and random forest based on bayesian optimization.\BBCQ \APACjournalVolNumPagesGeoscience Frontiers121469–477, {APACrefDOI} https://doi.org/https://doi.org/10.1016/j.gsf.2020.03.007 {APACrefURL} https://www.sciencedirect.com/science/article/pii/S1674987120300669 \PrintBackRefs\CurrentBib