Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learned Image resizing with efficient training (LRET) facilitates improved performance of large-scale digital histopathology image classification models (2401.11062v1)

Published 19 Jan 2024 in cs.CV

Abstract: Histologic examination plays a crucial role in oncology research and diagnostics. The adoption of digital scanning of whole slide images (WSI) has created an opportunity to leverage deep learning-based image classification methods to enhance diagnosis and risk stratification. Technical limitations of current approaches to training deep convolutional neural networks (DCNN) result in suboptimal model performance and make training and deployment of comprehensive classification models unobtainable. In this study, we introduce a novel approach that addresses the main limitations of traditional histopathology classification model training. Our method, termed Learned Resizing with Efficient Training (LRET), couples efficient training techniques with image resizing to facilitate seamless integration of larger histology image patches into state-of-the-art classification models while preserving important structural information. We used the LRET method coupled with two distinct resizing techniques to train three diverse histology image datasets using multiple diverse DCNN architectures. Our findings demonstrate a significant enhancement in classification performance and training efficiency. Across the spectrum of experiments, LRET consistently outperforms existing methods, yielding a substantial improvement of 15-28% in accuracy for a large-scale, multiclass tumor classification task consisting of 74 distinct brain tumor types. LRET not only elevates classification accuracy but also substantially reduces training times, unlocking the potential for faster model development and iteration. The implications of this work extend to broader applications within medical imaging and beyond, where efficient integration of high-resolution images into deep learning pipelines is paramount for driving advancements in research and clinical practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube