Papers
Topics
Authors
Recent
2000 character limit reached

Data Augmentation for Traffic Classification (2401.10754v2)

Published 19 Jan 2024 in cs.LG and cs.NI

Abstract: Data Augmentation (DA) -- enriching training data by adding synthetic samples -- is a technique widely adopted in Computer Vision (CV) and NLP tasks to improve models performance. Yet, DA has struggled to gain traction in networking contexts, particularly in Traffic Classification (TC) tasks. In this work, we fulfill this gap by benchmarking 18 augmentation functions applied to 3 TC datasets using packet time series as input representation and considering a variety of training conditions. Our results show that (i) DA can reap benefits previously unexplored, (ii) augmentations acting on time series sequence order and masking are better suited for TC than amplitude augmentations and (iii) basic models latent space analysis can help understanding the positive/negative effects of augmentations on classification performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.