Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

A systematic review of geospatial location embedding approaches in large language models: A path to spatial AI systems (2401.10279v1)

Published 12 Jan 2024 in cs.IR, cs.AI, and cs.CL

Abstract: Geospatial Location Embedding (GLE) helps a LLM assimilate and analyze spatial data. GLE emergence in Geospatial Artificial Intelligence (GeoAI) is precipitated by the need for deeper geospatial awareness in our complex contemporary spaces and the success of LLMs in extracting deep meaning in Generative AI. We searched Google Scholar, Science Direct, and arXiv for papers on geospatial location embedding and LLM and reviewed articles focused on gaining deeper spatial "knowing" through LLMs. We screened 304 titles, 30 abstracts, and 18 full-text papers that reveal four GLE themes - Entity Location Embedding (ELE), Document Location Embedding (DLE), Sequence Location Embedding (SLE), and Token Location Embedding (TLE). Synthesis is tabular and narrative, including a dialogic conversation between "Space" and "LLM." Though GLEs aid spatial understanding by superimposing spatial data, they emphasize the need to advance in the intricacies of spatial modalities and generalized reasoning. GLEs signal the need for a Spatial Foundation/LLM (SLM) that embeds spatial knowing within the model architecture. The SLM framework advances Spatial Artificial Intelligence Systems (SPAIS), establishing a Spatial Vector Space (SVS) that maps to physical space. The resulting spatially imbued LLM is unique. It simultaneously represents actual space and an AI-capable space, paving the way for AI native geo storage, analysis, and multi-modality as the basis for Spatial Artificial Intelligence Systems (SPAIS).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube