Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nowcasting Madagascar's real GDP using machine learning algorithms (2401.10255v1)

Published 24 Dec 2023 in econ.GN, cs.LG, and q-fin.EC

Abstract: We investigate the predictive power of different machine learning algorithms to nowcast Madagascar's gross domestic product (GDP). We trained popular regression models, including linear regularized regression (Ridge, Lasso, Elastic-net), dimensionality reduction model (principal component regression), k-nearest neighbors algorithm (k-NN regression), support vector regression (linear SVR), and tree-based ensemble models (Random forest and XGBoost regressions), on 10 Malagasy quarterly macroeconomic leading indicators over the period 2007Q1--2022Q4, and we used simple econometric models as a benchmark. We measured the nowcast accuracy of each model by calculating the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Our findings reveal that the Ensemble Model, formed by aggregating individual predictions, consistently outperforms traditional econometric models. We conclude that machine learning models can deliver more accurate and timely nowcasts of Malagasy economic performance and provide policymakers with additional guidance for data-driven decision making.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.