Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power in Numbers: Robust reading comprehension by finetuning with four adversarial sentences per example (2401.10091v1)

Published 18 Jan 2024 in cs.CL

Abstract: Recent models have achieved human level performance on the Stanford Question Answering Dataset when using F1 scores to evaluate the reading comprehension task. Yet, teaching machines to comprehend text has not been solved in the general case. By appending one adversarial sentence to the context paragraph, past research has shown that the F1 scores from reading comprehension models drop almost in half. In this paper, I replicate past adversarial research with a new model, ELECTRA-Small, and demonstrate that the new model's F1 score drops from 83.9% to 29.2%. To improve ELECTRA-Small's resistance to this attack, I finetune the model on SQuAD v1.1 training examples with one to five adversarial sentences appended to the context paragraph. Like past research, I find that the finetuned model on one adversarial sentence does not generalize well across evaluation datasets. However, when finetuned on four or five adversarial sentences the model attains an F1 score of more than 70% on most evaluation datasets with multiple appended and prepended adversarial sentences. The results suggest that with enough examples we can make models robust to adversarial attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ariel Marcus (1 paper)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets