Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

BlockAMC: Scalable In-Memory Analog Matrix Computing for Solving Linear Systems (2401.10042v1)

Published 18 Jan 2024 in cs.AR and cs.DC

Abstract: Recently, in-memory analog matrix computing (AMC) with nonvolatile resistive memory has been developed for solving matrix problems in one step, e.g., matrix inversion of solving linear systems. However, the analog nature sets up a barrier to the scalability of AMC, due to the limits on the manufacturability and yield of resistive memory arrays, non-idealities of device and circuit, and cost of hardware implementations. Aiming to deliver a scalable AMC approach for solving linear systems, this work presents BlockAMC, which partitions a large original matrix into smaller ones on different memory arrays. A macro is designed to perform matrix inversion and matrix-vector multiplication with the block matrices, obtaining the partial solutions to recover the original solution. The size of block matrices can be exponentially reduced by performing multiple stages of divide-and-conquer, resulting in a two-stage solver design that enhances the scalability of this approach. BlockAMC is also advantageous in alleviating the accuracy issue of AMC, especially in the presence of device and circuit non-idealities, such as conductance variations and interconnect resistances. Compared to a single AMC circuit solving the same problem, BlockAMC improves the area and energy efficiency by 48.83% and 40%, respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: