Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SensoDat: Simulation-based Sensor Dataset of Self-driving Cars (2401.09808v1)

Published 18 Jan 2024 in cs.SE

Abstract: Developing tools in the context of autonomous systems [22, 24 ], such as self-driving cars (SDCs), is time-consuming and costly since researchers and practitioners rely on expensive computing hardware and simulation software. We propose SensoDat, a dataset of 32,580 executed simulation-based SDC test cases generated with state-of-the-art test generators for SDCs. The dataset consists of trajectory logs and a variety of sensor data from the SDCs (e.g., rpm, wheel speed, brake thermals, transmission, etc.) represented as a time series. In total, SensoDat provides data from 81 different simulated sensors. Future research in the domain of SDCs does not necessarily depend on executing expensive test cases when using SensoDat. Furthermore, with the high amount and variety of sensor data, we think SensoDat can contribute to research, particularly for AI development, regression testing techniques for simulation-based SDC testing, flakiness in simulation, etc. Link to the dataset: https://doi.org/10.5281/zenodo.10307479

Citations (1)

Summary

We haven't generated a summary for this paper yet.