Papers
Topics
Authors
Recent
2000 character limit reached

SensoDat: Simulation-based Sensor Dataset of Self-driving Cars (2401.09808v1)

Published 18 Jan 2024 in cs.SE

Abstract: Developing tools in the context of autonomous systems [22, 24 ], such as self-driving cars (SDCs), is time-consuming and costly since researchers and practitioners rely on expensive computing hardware and simulation software. We propose SensoDat, a dataset of 32,580 executed simulation-based SDC test cases generated with state-of-the-art test generators for SDCs. The dataset consists of trajectory logs and a variety of sensor data from the SDCs (e.g., rpm, wheel speed, brake thermals, transmission, etc.) represented as a time series. In total, SensoDat provides data from 81 different simulated sensors. Future research in the domain of SDCs does not necessarily depend on executing expensive test cases when using SensoDat. Furthermore, with the high amount and variety of sensor data, we think SensoDat can contribute to research, particularly for AI development, regression testing techniques for simulation-based SDC testing, flakiness in simulation, etc. Link to the dataset: https://doi.org/10.5281/zenodo.10307479

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 18 likes about this paper.