Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep learning enhanced mixed integer optimization: Learning to reduce model dimensionality (2401.09556v2)

Published 17 Jan 2024 in math.OC, cs.AI, and cs.LG

Abstract: This work introduces a framework to address the computational complexity inherent in Mixed-Integer Programming (MIP) models by harnessing the potential of deep learning. By employing deep learning, we construct problem-specific heuristics that identify and exploit common structures across MIP instances. We train deep learning models to estimate complicating binary variables for target MIP problem instances. The resulting reduced MIP models are solved using standard off-the-shelf solvers. We present an algorithm for generating synthetic data enhancing the robustness and generalizability of our models across diverse MIP instances. We compare the effectiveness of (a) feed-forward neural networks (ANN) and (b) convolutional neural networks (CNN). To enhance the framework's performance, we employ Bayesian optimization for hyperparameter tuning, aiming to maximize the occurrence of global optimum solutions. We apply this framework to a flow-based facility location allocation MIP formulation that describes long-term investment planning and medium-term tactical scheduling in a personalized medicine supply chain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: