Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reservoir computing with logistic map (2401.09501v2)

Published 17 Jan 2024 in cond-mat.dis-nn, cs.NE, and nlin.CD

Abstract: Recent studies on reservoir computing essentially involve a high dimensional dynamical system as the reservoir, which transforms and stores the input as a higher dimensional state, for temporal and nontemporal data processing. We demonstrate here a method to predict temporal and nontemporal tasks by constructing virtual nodes as constituting a reservoir in reservoir computing using a nonlinear map, namely the logistic map, and a simple finite trigonometric series. We predict three nonlinear systems, namely Lorenz, Rossler, and Hindmarsh-Rose, for temporal tasks and a seventh order polynomial for nontemporal tasks with great accuracy. Also, the prediction is made in the presence of noise and found to closely agree with the target. Remarkably, the logistic map performs well and predicts close to the actual or target values. The low values of the root mean square error confirm the accuracy of this method in terms of efficiency. Our approach removes the necessity of continuous dynamical systems for constructing the reservoir in reservoir computing. Moreover, the accurate prediction for the three different nonlinear systems suggests that this method can be considered a general one and can be applied to predict many systems. Finally, we show that the method also accurately anticipates the time series of the all the three variable of Rossler system for the future (self prediction).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets