Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Gene-associated Disease Discovery Powered by Large Language Models (2401.09490v1)

Published 16 Jan 2024 in q-bio.QM and cs.IR

Abstract: The intricate relationship between genetic variation and human diseases has been a focal point of medical research, evidenced by the identification of risk genes regarding specific diseases. The advent of advanced genome sequencing techniques has significantly improved the efficiency and cost-effectiveness of detecting these genetic markers, playing a crucial role in disease diagnosis and forming the basis for clinical decision-making and early risk assessment. To overcome the limitations of existing databases that record disease-gene associations from existing literature, which often lack real-time updates, we propose a novel framework employing LLMs for the discovery of diseases associated with specific genes. This framework aims to automate the labor-intensive process of sifting through medical literature for evidence linking genetic variations to diseases, thereby enhancing the efficiency of disease identification. Our approach involves using LLMs to conduct literature searches, summarize relevant findings, and pinpoint diseases related to specific genes. This paper details the development and application of our LLM-powered framework, demonstrating its potential in streamlining the complex process of literature retrieval and summarization to identify diseases associated with specific genetic variations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.