Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using i-vectors for subject-independent cross-session EEG transfer learning (2401.08851v1)

Published 16 Jan 2024 in cs.LG, cs.CL, cs.SD, eess.AS, and q-bio.NC

Abstract: Cognitive load classification is the task of automatically determining an individual's utilization of working memory resources during performance of a task based on physiologic measures such as electroencephalography (EEG). In this paper, we follow a cross-disciplinary approach, where tools and methodologies from speech processing are used to tackle this problem. The corpus we use was released publicly in 2021 as part of the first passive brain-computer interface competition on cross-session workload estimation. We present our approach which used i-vector-based neural network classifiers to accomplish inter-subject cross-session EEG transfer learning, achieving 18% relative improvement over equivalent subject-dependent models. We also report experiments showing how our subject-independent models perform competitively on held-out subjects and improve with additional subject data, suggesting that subject-dependent training is not required for effective cognitive load determination.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: