Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Exploring Content-Based and Meta-Data Analysis for Detecting Fake News Infodemic: A case study on COVID-19 (2401.08841v1)

Published 16 Jan 2024 in cs.IR

Abstract: The coronavirus pandemic (COVID-19) is probably the most disruptive global health disaster in recent history. It negatively impacted the whole world and virtually brought the global economy to a standstill. However, as the virus was spreading, infecting people and claiming thousands of lives so was the spread and propagation of fake news, misinformation and disinformation about the event. These included the spread of unconfirmed health advice and remedies on social media. In this paper, false information about the pandemic is identified using a content-based approach and metadata curated from messages posted to online social networks. A content-based approach combined with metadata as well as an initial feature analysis is used and then several supervised learning models are tested for identifying and predicting misleading posts. Our approach shows up to 93% accuracy in the detection of fake news related posts about the COVID-19 pandemic

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.