Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Bag of Tricks to Boost Adversarial Transferability (2401.08734v2)

Published 16 Jan 2024 in cs.CV and cs.LG

Abstract: Deep neural networks are widely known to be vulnerable to adversarial examples. However, vanilla adversarial examples generated under the white-box setting often exhibit low transferability across different models. Since adversarial transferability poses more severe threats to practical applications, various approaches have been proposed for better transferability, including gradient-based, input transformation-based, and model-related attacks, \etc. In this work, we find that several tiny changes in the existing adversarial attacks can significantly affect the attack performance, \eg, the number of iterations and step size. Based on careful studies of existing adversarial attacks, we propose a bag of tricks to enhance adversarial transferability, including momentum initialization, scheduled step size, dual example, spectral-based input transformation, and several ensemble strategies. Extensive experiments on the ImageNet dataset validate the high effectiveness of our proposed tricks and show that combining them can further boost adversarial transferability. Our work provides practical insights and techniques to enhance adversarial transferability, and offers guidance to improve the attack performance on the real-world application through simple adjustments.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets