Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 31 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception (2401.08687v2)

Published 13 Jan 2024 in cs.CV

Abstract: Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space. However, most existing studies were conducted under a supervised setup which cannot scale well while handling various new data. Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored. In this work, we design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features. DA-BEV introduces the idea of query into the domain adaptation framework to derive useful information from image-view and BEV features. It consists of two query-based designs, namely, query-based adversarial learning (QAL) and query-based self-training (QST), which exploits image-view features or BEV features to regularize the adaptation of the other. Extensive experiments show that DA-BEV achieves superior domain adaptive BEV perception performance consistently across multiple datasets and tasks such as 3D object detection and 3D scene segmentation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.