Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The "Pac-Man'' Gripper: Tactile Sensing and Grasping through Thin-Shell Buckling (2401.08647v1)

Published 21 Dec 2023 in cs.RO

Abstract: Soft and lightweight grippers have greatly enhanced the performance of robotic manipulators in handling complex objects with varying shape, texture, and stiffness. However, the combination of universal grasping with passive sensing capabilities still presents challenges. To overcome this limitation, we introduce a fluidic soft gripper, named the ``Pac-Man'' gripper, based on the buckling of soft, thin hemispherical shells. Leveraging a single fluidic pressure input, the soft gripper can encapsulate slippery and delicate objects while passively providing information on this physical interaction. Guided by analytical, numerical, and experimental tools, we explore the novel grasping principle of this mechanics-based soft gripper. First, we characterize the buckling behavior of a free hemisphere as a function of its geometric parameters. Inspired by the free hemisphere's two-lobe mode shape ideal for grasping purposes, we demonstrate that the gripper can perform dexterous manipulation and gentle gripping of fragile objects in confined environments. Last, we prove the soft gripper's embedded capability of detecting contact, grasping, and release conditions during the interaction with an unknown object. This simple buckling-based soft gripper opens new avenues for the design of adaptive gripper morphologies with applications ranging from medical and agricultural robotics to space and underwater exploration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. D. W. Thompson, On Growth and Form, 1st ed., edited by J. T. Bonner (Cambridge University Press, 1992).
  2. P. Ball, Nature’s patterns: a tapestry in three parts (Oxford University Press, 2009) OCLC: ocn729742295.
  3. Y. Yang, K. Vella, and D. P. Holmes, Grasping with kirigami shells, Science Robotics 6, eabd6426 (2021).
  4. S. Li, J. J. Stampfli, H. J. Xu, E. Malkin, E. V. Diaz, D. Rus, and R. J. Wood, A vacuum-driven origami “magic-ball” soft gripper, in International Conference on Robotics and Automation (IEEE, 2019) pp. 7401–7408.
  5. R. Deimel and O. Brock, A novel type of compliant and underactuated robotic hand for dexterous grasping, The International Journal of Robotics Research 35, 161 (2016).
  6. J. Lidmar, L. Mirny, and D. R. Nelson, Virus shapes and buckling transitions in spherical shells, Physical Review E 68, 051910 (2003).
  7. E. Schaechter, A stroll with the moulds (2002).
  8. D. Nakane and M. Miyata, Cytoskeletal “jellyfish” structure of mycoplasma mobile, Proceedings of the National Academy of Sciences 104, 19518 (2007).
  9. E. M. Burreson, Marine and estuarine leeches (hirudinida: Ozobranchidae and piscicolidae) of australia and new zealand with a key to the species, Invertebrate systematics 34, 235 (2020).
  10. J. D. Gage and P. A. Tyler, Deep-Sea Biology, reprint with corrections ed. (Univ. Press, 1999).
  11. A. Fothergill, Blue planet: The deep (2001).
  12. R. Zoelly, Ueber ein knickungsproblem an der kugelschale (1915).
  13. S. Timoshenko and J. M. Gere, Theory of elastic stability, 2nd ed. (Dover Publications, 2009) OCLC: ocn294885242.
  14. A. N. Gent, A new constitutive relation for rubber, Rubber chemistry and technology 69, 59 (1996).
  15. J. W. Hutchinson and J. M. T. Thompson, Nonlinear buckling behaviour of spherical shells: barriers and symmetry-breaking dimples, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, 20160154 (2017).
  16. J.-H. Lee, H. S. Park, and D. P. Holmes, Stimuli-responsive shell theory, Mathematics and Mechanics of Solids , 10812865231159676 (2021).
  17. R. W. Ogden, Non-linear elastic deformations (Courier Corporation, 1997).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com